Suppr超能文献

深度灌注:一种基于成像光电容积脉搏波描记法的用于高精度血容量脉搏提取的可理解的双分支深度学习架构。

DeepPerfusion: A comprehensible two-branched deep learning architecture for high-precision blood volume pulse extraction based on imaging photoplethysmography.

作者信息

Scherpf Matthieu, Ernst Hannes, Malberg Hagen, Schmidt Martin

机构信息

Institute of Biomedical Engineering, TU Dresden, Germany.

Institute of Biomedical Engineering, TU Dresden, Germany.

出版信息

Comput Biol Med. 2025 Sep;196(Pt A):110571. doi: 10.1016/j.compbiomed.2025.110571. Epub 2025 Jul 3.

Abstract

Imaging photoplethysmography (iPPG) is a contactless approach for the extraction of the blood volume pulsation (BVP). Analyzing the small intensity changes resulting from fluctuations in light absorption in upper skin layers enables BVP extraction. Inhomogeneous illumination or head movements impede iPPG-based BVP extraction. To mitigate these influences, an important step is the accurate skin segmentation and weighting, which has received insufficient attention in state-of-the-art (SOTA) deep learning-based approaches in particular. Therefore, we propose DeepPerfusion, a two-branched deep learning architecture, that combines precise skin segmentation and weighting as well as BVP extraction into one model. Together with our newly developed patch-based temporal normalization mechanism and our innovative training pipeline, DeepPerfusion achieved highly accurate BVP extraction. We performed a thorough performance analysis and evaluated the mean absolute error (MAE) for heart rate extraction and the signal-to-noise ratio (SNR) on 156 subjects from three publicly available datasets and compared it with nine SOTA approaches that underwent the same training and evaluation pipeline. For the median across subjects of each dataset, DeepPerfusion consistently achieved MAE below 1 beat per minute, outperforming the best SOTA approaches by up to 49%. Furthermore, DeepPerfusion achieved high SNR with at least 5.81dB which was about two to three times higher compared to the best SOTA approaches. In contrast to SOTA approaches, DeepPerfusion's performance was consistent, robust and highly precise. This demonstrates DeepPerfusion's ability to perform high-precision BVP extraction. We expect this to open up new diagnostic applications for iPPG in the future.

摘要

成像光电容积脉搏波描记法(iPPG)是一种用于提取血容量搏动(BVP)的非接触式方法。通过分析上层皮肤层光吸收波动所导致的微小强度变化来实现BVP提取。光照不均匀或头部运动都会妨碍基于iPPG的BVP提取。为了减轻这些影响,一个重要步骤是精确的皮肤分割和加权,而这在基于深度学习的最新技术(SOTA)方法中尤其没有得到足够的重视。因此,我们提出了DeepPerfusion,一种双分支深度学习架构,它将精确的皮肤分割和加权以及BVP提取整合到一个模型中。结合我们新开发的基于补丁的时间归一化机制和创新的训练流程,DeepPerfusion实现了高精度的BVP提取。我们进行了全面的性能分析,并在来自三个公开可用数据集的156名受试者上评估了心率提取的平均绝对误差(MAE)和信噪比(SNR),并将其与九种经过相同训练和评估流程的SOTA方法进行了比较。对于每个数据集的受试者中位数,DeepPerfusion始终实现每分钟低于1次心跳的MAE,比最佳的SOTA方法性能高出49%。此外,DeepPerfusion实现了至少5.81dB的高SNR,比最佳的SOTA方法高出约两到三倍。与SOTA方法不同,DeepPerfusion的性能一致、稳健且高度精确。这证明了DeepPerfusion执行高精度BVP提取的能力。我们期望这将为未来iPPG开辟新的诊断应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验