Suppr超能文献

使用微小YOLOv4学习制造计算机视觉系统。

Learning manufacturing computer vision systems using tiny YOLOv4.

作者信息

Medina Adan, Bradley Russel, Xu Wenhao, Ponce Pedro, Anthony Brian, Molina Arturo

机构信息

School of Engineering and Sciences, Tecnologico de Monterrey, Tlalpan, Mexico.

Department of Mechanical Engineering, School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.

出版信息

Front Robot AI. 2024 Jun 12;11:1331249. doi: 10.3389/frobt.2024.1331249. eCollection 2024.

Abstract

Implementing and deploying advanced technologies are principal in improving manufacturing processes, signifying a transformative stride in the industrial sector. Computer vision plays a crucial innovation role during this technological advancement, demonstrating broad applicability and profound impact across various industrial operations. This pivotal technology is not merely an additive enhancement but a revolutionary approach that redefines quality control, automation, and operational efficiency parameters in manufacturing landscapes. By integrating computer vision, industries are positioned to optimize their current processes significantly and spearhead innovations that could set new standards for future industrial endeavors. However, the integration of computer vision in these contexts necessitates comprehensive training programs for operators, given this advanced system's complexity and abstract nature. Historically, training modalities have grappled with the complexities of understanding concepts as advanced as computer vision. Despite these challenges, computer vision has recently surged to the forefront across various disciplines, attributed to its versatility and superior performance, often matching or exceeding the capabilities of other established technologies. Nonetheless, there is a noticeable knowledge gap among students, particularly in comprehending the application of Artificial Intelligence (AI) within Computer Vision. This disconnect underscores the need for an educational paradigm transcending traditional theoretical instruction. Cultivating a more practical understanding of the symbiotic relationship between AI and computer vision is essential. To address this, the current work proposes a project-based instructional approach to bridge the educational divide. This methodology will enable students to engage directly with the practical aspects of computer vision applications within AI. By guiding students through a hands-on project, they will learn how to effectively utilize a dataset, train an object detection model, and implement it within a microcomputer infrastructure. This immersive experience is intended to bolster theoretical knowledge and provide a practical understanding of deploying AI techniques within computer vision. The main goal is to equip students with a robust skill set that translates into practical acumen, preparing a competent workforce to navigate and innovate in the complex landscape of Industry 4.0. This approach emphasizes the criticality of adapting educational strategies to meet the evolving demands of advanced technological infrastructures. It ensures that emerging professionals are adept at harnessing the potential of transformative tools like computer vision in industrial settings.

摘要

实施和部署先进技术是改进制造流程的关键,标志着工业领域的一次变革性跨越。计算机视觉在这一技术进步过程中发挥着至关重要的创新作用,在各种工业运营中展现出广泛的适用性和深远的影响。这项关键技术不仅是一种附加的增强手段,更是一种革命性的方法,它重新定义了制造领域中的质量控制、自动化和运营效率参数。通过集成计算机视觉,各行业能够显著优化其当前流程,并引领创新,为未来的工业发展树立新的标准。然而,鉴于这种先进系统的复杂性和抽象性,在这些背景下集成计算机视觉需要为操作员提供全面的培训计划。从历史上看,培训方式一直在应对理解像计算机视觉这样先进概念的复杂性。尽管存在这些挑战,但由于其通用性和卓越性能,计算机视觉最近在各个学科中都跃居前沿,其性能常常与其他成熟技术相当或更优。尽管如此,学生之间存在明显的知识差距,尤其是在理解人工智能(AI)在计算机视觉中的应用方面。这种脱节凸显了超越传统理论教学的教育范式的必要性。培养对AI与计算机视觉之间共生关系的更实际理解至关重要。为解决这一问题,当前的工作提出了一种基于项目的教学方法来弥合教育差距。这种方法将使学生能够直接参与AI中计算机视觉应用的实际操作。通过指导学生完成一个实践项目,他们将学习如何有效地利用数据集、训练目标检测模型并在微型计算机基础设施中实现它。这种沉浸式体验旨在强化理论知识,并提供在计算机视觉中部署AI技术的实际理解。主要目标是使学生具备强大的技能组合,转化为实际能力,培养一支有能力的劳动力队伍,以便在工业4.0的复杂环境中导航和创新。这种方法强调了调整教育策略以满足先进技术基础设施不断变化的需求的重要性。它确保新兴专业人员能够熟练利用计算机视觉等变革性工具在工业环境中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f78e/11199777/26eef8e374cc/frobt-11-1331249-g001.jpg

相似文献

1
Learning manufacturing computer vision systems using tiny YOLOv4.
Front Robot AI. 2024 Jun 12;11:1331249. doi: 10.3389/frobt.2024.1331249. eCollection 2024.
2
[Embracing the Era of Artificial Intelligence: Innovation and Preparation in Nursing Education].
Hu Li Za Zhi. 2024 Apr;71(2):4-5. doi: 10.6224/JN.202404_71(2).01.
3
The effectiveness of internet-based e-learning on clinician behavior and patient outcomes: a systematic review protocol.
JBI Database System Rev Implement Rep. 2015 Jan;13(1):52-64. doi: 10.11124/jbisrir-2015-1919.
4
Exploring conceptual and theoretical frameworks for nurse practitioner education: a scoping review protocol.
JBI Database System Rev Implement Rep. 2015 Oct;13(10):146-55. doi: 10.11124/jbisrir-2015-2150.
5
6
Unlocking the eHealth professionals' career pathways: A case of Gulf Cooperation Council countries.
Int J Med Inform. 2023 Feb;170:104914. doi: 10.1016/j.ijmedinf.2022.104914. Epub 2022 Nov 11.
9
YOLOv5 based object detection in reel package X-ray images of semiconductor component.
Heliyon. 2024 Feb 23;10(5):e26532. doi: 10.1016/j.heliyon.2024.e26532. eCollection 2024 Mar 15.
10
The revitalization of U.S. dental education.
J Dent Educ. 2008 Feb;72(2 Suppl):28-42.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验