Chen Wei, Yu Liming, Xu Min, Ji Xiaoquan, Shi Zhongbing, He Xiaoxue, Li Zhengji, Li Yonggao, Wang Tianbo, Jiang Min, Gong Shaobo, Wen Jie, Shi Peiwan, Yang Zengchen, Fang Kairui, Li Jia, Wei Lai, Zhong Wulv, Sun Aiping, Cao Jianyong, Bai Xingyu, Li Jiquan, Ding Xuantong, Dong Jiaqi, Yang Qingwei, Liu Yi, Yan Longwen, Wang Zhengxiong, Duan Xuanru
Joint Laboratory for Fusion Product and Energetic Particle, Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, China.
Key Laboratory of Materials Modification by Beams of the Ministry of Education, School of Physics, Dalian University of Technology, Dalian 116024, China.
Fundam Res. 2022 Jan 8;2(5):667-673. doi: 10.1016/j.fmre.2021.12.011. eCollection 2022 Sep.
Over the past several years, high- experiments have been carried out on HL-2A. The high- is realized using double transport barriers (DTBs) with hybrid scenarios. A stationary high- ( ) scenario was obtained by pure neutral-beam injection (NBI) heating. Transient high performance was also achieved, corresponding to , , , , , and . The high- scenario was successfully modeled using integrated simulation codes, that is, the one modeling framework for integrated tasks (OMFIT). In high- plasmas, magnetohydrodynamic (MHD) instabilities are abundant, including low-frequency global MHD oscillation with n = 1, high-frequency coherent mode (HCM) at the edge, and neoclassical tearing mode (NTM) and Alfvénic modes in the core. In some high- discharges, it is observed that the NTMs with limit the growth of the plasma energy and decrease . The low-n global MHD oscillation is consistent with the coupling of destabilized internal (m/n = 1/1) and external (m/n = 3/1 or 4/1) modes, and plays a crucial role in triggering the onset of ELMs. Achieving high- on HL-2A suggests that core-edge interplay is key to the plasma confinement enhancement mechanism. Experiments to enhance will contribute to future plasma operation, such as international thermonuclear experimental reactor .
在过去几年中,已在HL-2A上开展了高约束实验。高约束通过具有混合模式的双输运垒(DTB)来实现。通过纯中性束注入(NBI)加热获得了稳态高约束(H模式)情景。还实现了瞬态高性能,对应于不同的参数值。高约束情景已使用集成模拟代码成功建模,即集成任务的一个建模框架(OMFIT)。在高约束等离子体中,磁流体动力学(MHD)不稳定性很丰富,包括n = 1的低频全局MHD振荡、边缘的高频相干模(HCM)以及芯部的新经典撕裂模(NTM)和阿尔芬模。在一些高约束放电中,观察到具有特定值的NTM限制了等离子体能量的增长并降低了相关参数。低n全局MHD振荡与不稳定的内部(m/n = 1/1)和外部(m/n = 3/1或4/1)模式的耦合一致,并在触发边缘局域模(ELM)的起始中起关键作用。在HL-2A上实现高约束表明芯部 - 边缘相互作用是等离子体约束增强机制的关键。增强相关参数的实验将有助于未来的等离子体运行,例如国际热核聚变实验堆。