Suppr超能文献

评估认知模型中参数估计的稳健性:跨越多元估计方法的多元处理树模型的荟萃分析综述。

Evaluating the robustness of parameter estimates in cognitive models: A meta-analytic review of multinomial processing tree models across the multiverse of estimation methods.

机构信息

Department of Experimental Psychology, University College London.

Department of Psychology, University of Marburg.

出版信息

Psychol Bull. 2024 Aug;150(8):965-1003. doi: 10.1037/bul0000434. Epub 2024 Jun 27.

Abstract

Researchers have become increasingly aware that data-analysis decisions affect results. Here, we examine this issue systematically for multinomial processing tree (MPT) models, a popular class of cognitive models for categorical data. Specifically, we examine the robustness of MPT model parameter estimates that arise from two important decisions: the level of data aggregation (complete-pooling, no-pooling, or partial-pooling) and the statistical framework (frequentist or Bayesian). These decisions span a of estimation methods. We synthesized the data from 13,956 participants (164 published data sets) with a meta-analytic strategy and analyzed the between estimation methods for the parameters of nine popular MPT models in psychology (e.g., process-dissociation, source monitoring). We further examined moderators as potential . We found that the absolute divergence between estimation methods was small on average (<.04; with MPT parameters ranging between 0 and 1); in some cases, however, divergence amounted to nearly the maximum possible range (.97). Divergence was partly explained by few moderators (e.g., the specific MPT model parameter, uncertainty in parameter estimation), but not by other plausible candidate moderators (e.g., parameter trade-offs, parameter correlations) or their interactions. Partial-pooling methods showed the smallest divergence within and across levels of pooling and thus seem to be an appropriate default method. Using MPT models as an example, we show how transparency and robustness can be increased in the field of cognitive modeling. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

摘要

研究人员越来越意识到数据分析决策会影响结果。在这里,我们系统地检查了多项处理树(MPT)模型的这个问题,这是一种用于分类数据的流行认知模型。具体来说,我们检查了 MPT 模型参数估计的稳健性,这些估计来自两个重要的决策:数据聚合水平(完全聚合、不聚合或部分聚合)和统计框架(频率主义或贝叶斯)。这些决策涵盖了一系列的估计方法。我们使用元分析策略综合了来自 13956 名参与者(164 个已发表的数据集)的数据,并分析了九个流行的 MPT 模型在心理学中的参数的估计方法之间的差异(例如,过程分离、源监测)。我们进一步研究了潜在的调节因素。我们发现,估计方法之间的绝对差异平均很小(<0.04;MPT 参数的范围在 0 到 1 之间);然而,在某些情况下,差异达到了最大可能的范围(0.97)。差异部分可以由少数调节因素来解释(例如,特定的 MPT 模型参数、参数估计的不确定性),但不能由其他可能的候选调节因素(例如,参数权衡、参数相关性)或它们的交互作用来解释。部分聚合方法在聚合水平内和之间显示出最小的差异,因此似乎是一种合适的默认方法。我们以 MPT 模型为例,展示了如何在认知建模领域提高透明度和稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验