Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan.
Proc Natl Acad Sci U S A. 2024 Jul 2;121(27):e2322939121. doi: 10.1073/pnas.2322939121. Epub 2024 Jun 27.
Indeterminacy of ecological networks-the unpredictability of ecosystem responses to persistent perturbations-is an emergent property of indirect effects a species has on another through interaction chains. Thus, numerous indirect pathways in large, complex ecological communities could make forecasting the long-term outcomes of environmental changes challenging. However, a comprehensive understanding of ecological structures causing indeterminacy has not yet been reached. Here, using random matrix theory (RMT), we provide mathematical criteria determining whether network indeterminacy emerges across various ecological communities. Our analytical and simulation results show that indeterminacy intricately depends on the characteristics of species interaction. Specifically, contrary to conventional wisdom, network indeterminacy is unlikely to emerge in large competitive and mutualistic communities, while it is a common feature in top-down regulated food webs. Furthermore, we found that predictable and unpredictable perturbations can coexist in the same community and that indeterminate responses to environmental changes arise more frequently in networks where predator-prey relationships predominate than competitive and mutualistic ones. These findings highlight the importance of elucidating direct species relationships and analyzing them with an RMT perspective on two fronts: It aids in 1) determining whether the network's responses to environmental changes are ultimately indeterminate and 2) identifying the types of perturbations causing less predictable outcomes in a complex ecosystem. In addition, our framework should apply to the inverse problem of network identification, i.e., determining whether observed responses to sustained perturbations can reconstruct their proximate causalities, potentially impacting other fields such as microbial and medical sciences.
生态网络的不确定性——生态系统对持续干扰的反应不可预测——是物种通过相互作用链对另一个物种产生间接影响的一种突现属性。因此,在大型复杂生态群落中,许多间接途径可能使预测环境变化的长期结果变得具有挑战性。然而,人们尚未全面了解导致不确定性的生态结构。在这里,我们使用随机矩阵理论(RMT)为各种生态群落中是否出现网络不确定性提供了数学标准。我们的分析和模拟结果表明,不确定性错综复杂地取决于物种相互作用的特征。具体来说,与传统观点相反,在竞争和互利的大型群落中不太可能出现网络不确定性,而在自上而下调控的食物网中则是常见特征。此外,我们发现可预测和不可预测的干扰可以共存于同一群落中,并且在以捕食者-猎物关系为主的网络中,对环境变化的不确定响应比竞争和互利关系更为常见。这些发现强调了阐明直接物种关系并从两个方面用 RMT 视角进行分析的重要性:它有助于 1)确定网络对环境变化的响应是否最终不确定,以及 2)确定导致复杂生态系统中不可预测结果的干扰类型。此外,我们的框架应适用于网络识别的逆问题,即确定对持续干扰的观察响应是否可以重建其近似因果关系,这可能会对微生物和医学等其他领域产生影响。