Suppr超能文献

分子生态网络分析。

Molecular ecological network analyses.

机构信息

Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA.

出版信息

BMC Bioinformatics. 2012 May 30;13:113. doi: 10.1186/1471-2105-13-113.

Abstract

BACKGROUND

Understanding the interaction among different species within a community and their responses to environmental changes is a central goal in ecology. However, defining the network structure in a microbial community is very challenging due to their extremely high diversity and as-yet uncultivated status. Although recent advance of metagenomic technologies, such as high throughout sequencing and functional gene arrays, provide revolutionary tools for analyzing microbial community structure, it is still difficult to examine network interactions in a microbial community based on high-throughput metagenomics data.

RESULTS

Here, we describe a novel mathematical and bioinformatics framework to construct ecological association networks named molecular ecological networks (MENs) through Random Matrix Theory (RMT)-based methods. Compared to other network construction methods, this approach is remarkable in that the network is automatically defined and robust to noise, thus providing excellent solutions to several common issues associated with high-throughput metagenomics data. We applied it to determine the network structure of microbial communities subjected to long-term experimental warming based on pyrosequencing data of 16 S rRNA genes. We showed that the constructed MENs under both warming and unwarming conditions exhibited topological features of scale free, small world and modularity, which were consistent with previously described molecular ecological networks. Eigengene analysis indicated that the eigengenes represented the module profiles relatively well. In consistency with many other studies, several major environmental traits including temperature and soil pH were found to be important in determining network interactions in the microbial communities examined. To facilitate its application by the scientific community, all these methods and statistical tools have been integrated into a comprehensive Molecular Ecological Network Analysis Pipeline (MENAP), which is open-accessible now (http://ieg2.ou.edu/MENA).

CONCLUSIONS

The RMT-based molecular ecological network analysis provides powerful tools to elucidate network interactions in microbial communities and their responses to environmental changes, which are fundamentally important for research in microbial ecology and environmental microbiology.

摘要

背景

理解群落中不同物种之间的相互作用及其对环境变化的响应是生态学的一个核心目标。然而,由于微生物极高的多样性和尚未培养的状态,定义微生物群落的网络结构极具挑战性。尽管高通量测序和功能基因芯片等宏基因组技术的最新进展为分析微生物群落结构提供了革命性的工具,但仍然难以根据高通量宏基因组数据来检测微生物群落中的网络相互作用。

结果

在这里,我们描述了一种通过基于随机矩阵理论(RMT)的方法构建生态关联网络的新的数学和生物信息学框架,命名为分子生态网络(MENs)。与其他网络构建方法相比,该方法的显著特点是网络自动定义且对噪声鲁棒,因此为解决与高通量宏基因组数据相关的几个常见问题提供了出色的解决方案。我们应用该方法来确定基于 16S rRNA 基因焦磷酸测序数据的长期实验加热下微生物群落的网络结构。结果表明,在加热和未加热条件下构建的 MENs 均表现出无标度、小世界和模块性的拓扑特征,这与之前描述的分子生态网络一致。特征基因分析表明,特征基因能很好地代表模块特征。与许多其他研究一致,发现包括温度和土壤 pH 在内的几个主要环境特征对确定所研究微生物群落中的网络相互作用很重要。为了方便科学界应用,我们将所有这些方法和统计工具整合到一个综合的分子生态网络分析管道(MENAP)中,现在可以公开访问(http://ieg2.ou.edu/MENA)。

结论

基于 RMT 的分子生态网络分析为阐明微生物群落中的网络相互作用及其对环境变化的响应提供了强大的工具,这对于微生物生态学和环境微生物学的研究至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37b4/3428680/8e39c8edc840/1471-2105-13-113-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验