Department of Electrical and Computer Engineering, Inha University, Incheon, Republic of Korea.
College of Medicine, Inha University, Incheon, Republic of Korea.
PLoS One. 2024 Jun 27;19(6):e0305360. doi: 10.1371/journal.pone.0305360. eCollection 2024.
Fertility-sparing treatment (FST) might be considered an option for reproductive patients with low-risk endometrial cancer (EC). On the other hand, the matching rates between preoperative assessment and postoperative pathology in low-risk EC patients are not high enough. We aimed to predict the postoperative pathology depending on preoperative myometrial invasion (MI) and grade in low-risk EC patients to help extend the current criteria for FST.
METHODS/MATERIALS: This ancillary study (KGOG 2015S) of Korean Gynecologic Oncology Group 2015, a prospective, multicenter study included patients with no MI or MI <1/2 on preoperative MRI and endometrioid adenocarcinoma and grade 1 or 2 on endometrial biopsy. Among the eligible patients, Groups 1-4 were defined with no MI and grade 1, no MI and grade 2, MI <1/2 and grade 1, and MI <1/2 and grade 2, respectively. New prediction models using machine learning were developed.
Among 251 eligible patients, Groups 1-4 included 106, 41, 74, and 30 patients, respectively. The new prediction models showed superior prediction values to those from conventional analysis. In the new prediction models, the best NPV, sensitivity, and AUC of preoperative each group to predict postoperative each group were as follows: 87.2%, 71.6%, and 0.732 (Group 1); 97.6%, 78.6%, and 0.656 (Group 2); 71.3%, 78.6% and 0.588 (Group 3); 91.8%, 64.9%, and 0.676% (Group 4).
In low-risk EC patients, the prediction of postoperative pathology was ineffective, but the new prediction models provided a better prediction.
对于低危子宫内膜癌(EC)的生殖患者,保留生育力的治疗(FST)可能是一种选择。另一方面,低危 EC 患者术前评估与术后病理的匹配率不够高。我们旨在根据低危 EC 患者术前的肌层浸润(MI)和分级预测术后病理,以帮助扩展当前 FST 的标准。
方法/材料:这是韩国妇科肿瘤学组 2015 年(KGOG 2015S)的一项辅助研究,是一项前瞻性、多中心研究,纳入了术前 MRI 无 MI 或 MI<1/2,子宫内膜活检为子宫内膜样腺癌和分级 1 或 2 的患者。在符合条件的患者中,无 MI 且分级 1、无 MI 且分级 2、MI<1/2 且分级 1 和 MI<1/2 且分级 2 的患者分别归入第 1-4 组。利用机器学习开发了新的预测模型。
在 251 名符合条件的患者中,第 1-4 组分别包括 106、41、74 和 30 名患者。新的预测模型显示出优于传统分析的预测值。在新的预测模型中,术前每组预测术后每组的最佳阴性预测值、敏感性和 AUC 如下:87.2%、71.6%和 0.732(第 1 组);97.6%、78.6%和 0.656(第 2 组);71.3%、78.6%和 0.588(第 3 组);91.8%、64.9%和 0.676%(第 4 组)。
在低危 EC 患者中,术后病理的预测效果不佳,但新的预测模型提供了更好的预测。