Suppr超能文献

基于人类连接组计划的功能脑连接的新型阿尔茨海默病亚型。

Novel Alzheimer's disease subtypes based on functional brain connectivity in human connectome project.

机构信息

School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China.

Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, 310018, China.

出版信息

Sci Rep. 2024 Jun 27;14(1):14821. doi: 10.1038/s41598-024-65846-z.

Abstract

The pathogenesis of Alzheimer's disease (AD) remains unclear, but revealing individual differences in functional connectivity (FC) may provide insights and improve diagnostic precision. A hierarchical clustering-based autoencoder with functional connectivity was proposed to categorize 82 AD patients from the Alzheimer's Disease Neuroimaging Initiative. Compared to directly performing clustering, using an autoencoder to reduce the dimensionality of the matrix can effectively eliminate noise and redundant information in the data, extract key features, and optimize clustering performance. Subsequently, subtype differences in clinical and graph theoretical metrics were assessed. Results indicate a significant inter-subject heterogeneity in the degree of FC disruption among AD patients. We have identified two neurophysiological subtypes: subtype I exhibits widespread functional impairment across the entire brain, while subtype II shows mild impairment in the Limbic System region. What is worth noting is that we also observed significant differences between subtypes in terms of neurocognitive assessment scores associations with network functionality, and graph theory metrics. Our method can accurately identify different functional disruptions in subtypes of AD, facilitating personalized treatment and early diagnosis, ultimately improving patient outcomes.

摘要

阿尔茨海默病(AD)的发病机制仍不清楚,但揭示功能连接(FC)的个体差异可能提供深入了解并提高诊断精度。提出了一种基于层次聚类的功能连接自动编码器,用于对来自阿尔茨海默病神经影像学倡议的 82 名 AD 患者进行分类。与直接进行聚类相比,使用自动编码器降低矩阵的维数可以有效地消除数据中的噪声和冗余信息,提取关键特征,并优化聚类性能。随后,评估了临床和图论指标的亚型差异。结果表明,AD 患者之间的 FC 破坏程度存在显著的个体间异质性。我们已经确定了两种神经生理亚型:亚型 I 表现为整个大脑的广泛功能障碍,而亚型 II 则表现为边缘系统区域的轻度障碍。值得注意的是,我们还观察到在神经认知评估分数与网络功能和图论指标之间的关联方面,亚型之间存在显著差异。我们的方法可以准确识别 AD 亚型中的不同功能障碍,促进个性化治疗和早期诊断,最终改善患者的预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验