Montreal Neurological Institute, McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada; Laboratoire International de Neuroimagerie et Modélisation, Montréal, Québec, Canada.
Laboratoire d'Imagerie Fonctionnelle, UMR-S 678, INSERM-UPMC, Paris, France.
Neuroimage. 2014 Nov 1;101:778-86. doi: 10.1016/j.neuroimage.2014.08.003. Epub 2014 Aug 9.
Cognitive decline in normal ageing and Alzheimer's disease (AD) emerges from functional disruption in the coordination of large-scale brain systems sustaining cognition. Integrity of these systems can be examined by correlation methods based on analysis of resting state functional magnetic resonance imaging (fMRI). Here we investigate functional connectivity within the default mode network (DMN) in normal ageing and AD using resting state fMRI. Images from young and elderly controls, and patients with AD were processed using spatial independent component analysis to identify the DMN. Functional connectivity was quantified using integration and indices derived from graph theory. Four DMN sub-systems were identified: Frontal (medial and superior), parietal (precuneus-posterior cingulate, lateral parietal), temporal (medial temporal), and hippocampal (bilateral). There was a decrease in antero-posterior interactions (lower global efficiency), but increased interactions within the frontal and parietal sub-systems (higher local clustering) in elderly compared to young controls. This decreased antero-posterior integration was more pronounced in AD patients compared to elderly controls, particularly in the precuneus-posterior cingulate region. Conjoint knowledge of integration measures and graph indices in the same data helps in the interpretation of functional connectivity results, as comprehension of one measure improves with understanding of the other. The approach allows for complete characterisation of connectivity changes and could be applied to other resting state networks and different pathologies.
正常衰老和阿尔茨海默病(AD)中的认知能力下降源于维持认知的大脑系统的大规模协调功能障碍。这些系统的完整性可以通过基于静息态功能磁共振成像(rs-fMRI)分析的相关方法来检查。在这里,我们使用静息态 fMRI 研究正常衰老和 AD 中的默认模式网络(DMN)的功能连接。使用空间独立成分分析对年轻和老年对照组以及 AD 患者的图像进行处理,以识别 DMN。使用整合和来自图论的指标来量化功能连接。确定了四个 DMN 子系统:额叶(内侧和上侧)、顶叶(后扣带回-顶叶,外侧顶叶)、颞叶(内侧颞叶)和海马(双侧)。与年轻对照组相比,老年人的前后交互作用(较低的全局效率)减少,但额叶和顶叶子系统内的交互作用增加(较高的局部聚类)。与老年对照组相比,AD 患者的前后整合减少更为明显,特别是在后扣带回-顶叶区域。在同一数据中整合度量和图指标的联合知识有助于解释功能连接结果,因为对一个度量的理解会提高对另一个度量的理解。该方法允许对连接变化进行全面描述,并可应用于其他静息态网络和不同的病理学。