Hoseini Benyamin, Jaafari Mahmoud Reza, Golabpour Amin, Rahmatinejad Zahra, Karimi Maryam, Eslami Saeid
Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
Curr Drug Deliv. 2024 Jun 27. doi: 10.2174/0115672018302321240620072039.
Nanoliposomal formulations, utilizing lipid bilayers to encapsulate therapeutic agents, hold promise for targeted drug delivery. Recent studies have explored the application of machine learning (ML) techniques in this field. This study aims to elucidate the motivations behind integrating ML into liposomal formulations, providing a nuanced understanding of its applications and highlighting potential advantages. The review begins with an overview of liposomal formulations and their role in targeted drug delivery. It then systematically progresses through current research on ML in this area, discussing the principles guiding ML adaptation for liposomal preparation and characterization. Additionally, the review proposes a conceptual model for effective ML incorporation. The review explores popular ML techniques, including ensemble learning, decision trees, instance- based learning, and neural networks. It discusses feature extraction and selection, emphasizing the influence of dataset nature and ML method choice on technique relevance. The review underscores the importance of supervised learning models for structured liposomal formulations, where labeled data is essential. It acknowledges the merits of K-fold cross-validation but notes the prevalent use of single train/test splits in liposomal formulation studies. This practice facilitates the visualization of results through 3D plots for practical interpretation. While highlighting the mean absolute error as a crucial metric, the review emphasizes consistency between predicted and actual values. It clearly demonstrates ML techniques' effectiveness in optimizing critical formulation parameters such as encapsulation efficiency, particle size, drug loading efficiency, polydispersity index, and liposomal flux. In conclusion, the review navigates the nuances of various ML algorithms, illustrating ML's role as a decision support system for liposomal formulation development. It proposes a structured framework involving experimentation, physicochemical analysis, and iterative ML model refinement through human-centered evaluation, guiding future studies. Emphasizing meticulous experimentation, interdisciplinary collaboration, and continuous validation, the review advocates seamless ML integration into liposomal drug delivery research for robust advancements. Future endeavors are encouraged to uphold these principles.
纳米脂质体制剂利用脂质双层来包裹治疗剂,在靶向药物递送方面具有前景。最近的研究探索了机器学习(ML)技术在该领域的应用。本研究旨在阐明将ML整合到脂质体制剂背后的动机,对其应用进行细致入微的理解,并突出潜在优势。综述首先概述脂质体制剂及其在靶向药物递送中的作用。然后系统地介绍该领域当前关于ML的研究,讨论指导将ML应用于脂质体制备和表征的原理。此外,综述还提出了一个有效整合ML的概念模型。综述探讨了流行的ML技术,包括集成学习、决策树、基于实例的学习和神经网络。它讨论了特征提取和选择,强调数据集性质和ML方法选择对技术相关性的影响。综述强调了监督学习模型对于结构化脂质体制剂的重要性,其中标记数据至关重要。它认可K折交叉验证的优点,但指出在脂质体制剂研究中普遍使用单训练/测试分割。这种做法有助于通过3D图直观呈现结果以便实际解读。在强调平均绝对误差作为关键指标的同时,综述强调预测值与实际值之间的一致性。它清楚地展示了ML技术在优化关键制剂参数(如包封效率、粒径、载药效率、多分散指数和脂质体通量)方面的有效性。总之,综述梳理了各种ML算法的细微差别,阐明了ML作为脂质体制剂开发决策支持系统的作用。它提出了一个结构化框架,包括实验、物理化学分析以及通过以人为主的评估对ML模型进行迭代优化,为未来研究提供指导。综述强调精心实验、跨学科合作和持续验证,主张将ML无缝整合到脂质体药物递送研究中以实现稳健进展。鼓励未来的研究坚持这些原则。