Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States.
Department of Medicine, University of California San Diego, La Jolla, CA 92093, United States.
Bioinformatics. 2024 Jun 28;40(Suppl 1):i160-i168. doi: 10.1093/bioinformatics/btae209.
Predicting cancer drug response requires a comprehensive assessment of many mutations present across a tumor genome. While current drug response models generally use a binary mutated/unmutated indicator for each gene, not all mutations in a gene are equivalent.
Here, we construct and evaluate a series of predictive models based on leading methods for quantitative mutation scoring. Such methods include VEST4 and CADD, which score the impact of a mutation on gene function, and CHASMplus, which scores the likelihood a mutation drives cancer. The resulting predictive models capture cellular responses to dabrafenib, which targets BRAF-V600 mutations, whereas models based on binary mutation status do not. Performance improvements generalize to other drugs, extending genetic indications for PIK3CA, ERBB2, EGFR, PARP1, and ABL1 inhibitors. Introducing quantitative mutation features in drug response models increases performance and mechanistic understanding.
Code and example datasets are available at https://github.com/pgwall/qms.
预测癌症药物反应需要全面评估肿瘤基因组中存在的许多突变。虽然目前的药物反应模型通常使用每个基因的二进制突变/未突变指标,但基因中的并非所有突变都是等效的。
在这里,我们构建并评估了一系列基于定量突变评分的领先方法的预测模型。这些方法包括 VEST4 和 CADD,它们对突变对基因功能的影响进行评分,以及 CHASMplus,它对突变驱动癌症的可能性进行评分。由此产生的预测模型可捕获针对靶向 BRAF-V600 突变的 dabrafenib 的细胞反应,而基于二进制突变状态的模型则不能。性能提升可推广到其他药物,扩展了 PIK3CA、ERBB2、EGFR、PARP1 和 ABL1 抑制剂的遗传适应症。在药物反应模型中引入定量突变特征可提高性能并加深对机制的理解。
代码和示例数据集可在 https://github.com/pgwall/qms 上获得。