Suppr超能文献

由热电化学兼容原位聚合固态电解质实现的本质安全锂金属电池。

Intrinsically Safe Lithium Metal Batteries Enabled by Thermo-Electrochemical Compatible In Situ Polymerized Solid-State Electrolytes.

作者信息

Yang Shi-Jie, Yuan Hong, Yao Nan, Hu Jiang-Kui, Wang Xi-Long, Wen Rui, Liu Jia, Huang Jia-Qi

机构信息

Advanced Research Institute of Multidisciplinary Science, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.

Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.

出版信息

Adv Mater. 2024 Aug;36(35):e2405086. doi: 10.1002/adma.202405086. Epub 2024 Jul 3.

Abstract

In situ polymerized solid-state electrolytes have attracted much attention due to high Li-ion conductivity, conformal interface contact, and low interface resistance, but are plagued by lithium dendrite, interface degradation, and inferior thermal stability, which thereby leads to limited lifespan and severe safety hazards for high-energy lithium metal batteries (LMBs). Herein, an in situ polymerized electrolyte is proposed by copolymerization of 1,3-dioxolane with 1,3,5-tri glycidyl isocyanurate (TGIC) as a cross-linking agent, which realizes a synergy of battery thermal safety and interface compatibility with Li anode. Functional TGIC enhances the electrolyte polymeric level. The unique carbon-formation mechanism facilitates flame retardancy and eliminates the battery fire risk. In the meantime, TGIC-derived inorganic-rich interphase inhibits interface side reactions and promotes uniform Li plating. Intrinsically safe LMBs with nonflammability and outstanding electrochemical performances under extreme temperatures (130 °C) are achieved. This functional polymer design shows a promising prospect for the development of safe LMBs.

摘要

原位聚合固态电解质因其高锂离子传导率、良好的界面接触和低界面电阻而备受关注,但却受到锂枝晶、界面降解和较差的热稳定性的困扰,从而导致高能量锂金属电池(LMBs)的寿命有限和严重的安全隐患。在此,通过将1,3-二氧戊环与作为交联剂的1,3,5-三缩水甘油基异氰脲酸酯(TGIC)共聚,提出了一种原位聚合电解质,实现了电池热安全性与与锂负极界面兼容性的协同作用。功能性TGIC提高了电解质的聚合程度。独特的成碳机制有助于阻燃并消除电池起火风险。同时,TGIC衍生的富无机中间相抑制了界面副反应并促进了锂的均匀沉积。实现了具有不燃性且在极端温度(130°C)下具有出色电化学性能的本质安全型LMBs。这种功能性聚合物设计为安全LMBs的发展展现出了广阔的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验