Amrani Lemya, Bensaid Djillali, Azzaz Yahia, Hebri Salem, Bendouma Doumi, Moulay Noureddine, Benkhettou Nour-Eddine, Rached Habib
Faculty of Science and Technology, University Ain Temouchent, Belhadj Bouchaib, BP 284, 46000, Ain Temouchent, Algeria.
Magnetic Materials Laboratory, Djillali Liabès University, BP89, 22000, Sidi Bel Abbès, Algeria.
J Mol Model. 2024 Jun 28;30(7):234. doi: 10.1007/s00894-024-06028-6.
In this study, we delve into the physical characteristics of six hydride perovskites of ABH-type materials (CsCaH, CsSrH, KMgH, LiBaH, NaBeH, and RbCaH). Our investigation primarily focuses on assessing their structural stability by determining the enthalpy of formation and examining the dispersion of phonons. Using band structure calculations, we discern the characteristics of semiconductors, observing a direct bandgap in all four perovskites except NaBeH and KMgH, which exhibit indirect gaps. Among these, NaBeH possesses the narrowest gap at 1.91 eV, while the widest gap is observed in the perovskite RbCaH, measuring 4.56 eV. Furthermore, we conduct a thorough analysis of their optical properties, including parameters such as the real and imaginary dielectric function, absorption coefficient, and refractive index within an energy range of 0 to 14 eV. The results of our study are highly encouraging, suggesting that these materials hold significant promise for utilization in photovoltaic cells. This is primarily attributed to their remarkable ability to absorb light across both the ultraviolet (UV) and visible spectra. Additionally, we conducted an assessment of the thermoelectric properties of the six perovskite materials. RbMgH exhibits a maximum Seebeck coefficient (S) of 1.5 mV/K, whereas KMgH achieves a figure of merit reaching unity. These findings present promising opportunities for utilizing these compounds in thermoelectric devices.
In this study, all self-consistent field (SCF) calculations were performed using density functional theory (DFT), employing the FP-LAPW + lo method as implemented in the Wien2k code. The Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation, the modified Becke-Johnson (mBJ) methods, and the HSE06 hybrid functional were employed to characterize the exchange-correlation interactions. Thermoelectric parameters were extracted using the BoltzTraP software.
在本研究中,我们深入探究了ABH型材料的六种氢化物钙钛矿(CsCaH、CsSrH、KMgH、LiBaH、NaBeH和RbCaH)的物理特性。我们的研究主要集中于通过确定形成焓并研究声子色散来评估其结构稳定性。利用能带结构计算,我们识别出半导体的特性,观察到除NaBeH和KMgH呈现间接带隙外,其他四种钙钛矿均为直接带隙。其中,NaBeH的带隙最窄,为1.91 eV,而带隙最宽的是钙钛矿RbCaH,为4.56 eV。此外,我们对其光学性质进行了全面分析,包括在0至14 eV能量范围内的实部和虚部介电函数、吸收系数和折射率等参数。我们的研究结果非常令人鼓舞,表明这些材料在光伏电池中的应用具有巨大潜力。这主要归因于它们在紫外(UV)和可见光谱范围内吸收光的卓越能力。此外,我们还对这六种钙钛矿材料的热电性质进行了评估。RbMgH的最大塞贝克系数(S)为1.5 mV/K,而KMgH的品质因数达到了1。这些发现为在热电装置中使用这些化合物提供了有前景的机会。
在本研究中,所有自洽场(SCF)计算均使用密度泛函理论(DFT),采用Wien2k代码中实现的FP-LAPW + lo方法。采用佩德韦-伯克-恩恩泽霍夫(PBE)广义梯度近似、修正的贝克-约翰逊(mBJ)方法和HSE06杂化泛函来表征交换关联相互作用。使用BoltzTraP软件提取热电参数。