Suppr超能文献

Bridging the Gap Between Detection, Understanding, and Future Innovation in Patient-Ventilator Asynchronies.

作者信息

Notó Marc, Blanch Lluís, de Haro Candelaria

机构信息

Critical Care DepartmentParc Taulí Hospital UniversitariInstitut d'Investigació i Innovació Parc Taulí (I3PT-CERCA)Sabadell, Spain.

Critical Care DepartmentParc Taulí Hospital UniversitariInstitut d'Investigació i Innovació Parc Taulí (I3PT-CERCA)Sabadell, SpainCentro Investigación Biomédica enRed de Enfermedades Respiratorias (CIBERES)Instituto de Salud Carlos IIIMadrid, Spain.

出版信息

Respir Care. 2024 Jun 28;69(7):902-904. doi: 10.4187/respcare.12153.

Abstract
摘要

相似文献

2
Artificial intelligence in the management of patient-ventilator asynchronies: A scoping review.
Heart Lung. 2025 Sep-Oct;73:139-152. doi: 10.1016/j.hrtlng.2025.05.003. Epub 2025 May 23.
5
Artificial Intelligence for the Detection of Patient-Ventilator Asynchrony.
Respir Care. 2025 May;70(5):583-592. doi: 10.1089/respcare.12540. Epub 2025 Apr 3.
6
Monitoring patient-ventilator asynchrony.
Curr Opin Crit Care. 2016 Jun;22(3):246-53. doi: 10.1097/MCC.0000000000000307.
7
Asynchrony and dyspnea.
Respir Care. 2013 Jun;58(6):973-89. doi: 10.4187/respcare.02507.
8
Patient-ventilator asynchrony.
Curr Opin Crit Care. 2016 Feb;22(1):53-9. doi: 10.1097/MCC.0000000000000270.
9
Minimizing Asynchronies in Mechanical Ventilation: Current and Future Trends.
Respir Care. 2018 Apr;63(4):464-478. doi: 10.4187/respcare.05949. Epub 2018 Feb 27.
10
Patient-Ventilator Asynchronies: Clinical Implications and Practical Solutions.
Respir Care. 2020 Nov;65(11):1751-1766. doi: 10.4187/respcare.07284. Epub 2020 Jul 14.

本文引用的文献

1
Survey of Ventilator Waveform Interpretation Among ICU Professionals.
Respir Care. 2024 Jun 28;69(7):773-781. doi: 10.4187/respcare.11677.
3
Dyspnoea in acutely ill mechanically ventilated adult patients: an ERS/ESICM statement.
Intensive Care Med. 2024 Feb;50(2):159-180. doi: 10.1007/s00134-023-07246-x. Epub 2024 Feb 22.
4
Specific Training Improves the Detection and Management of Patient-Ventilator Asynchrony.
Respir Care. 2024 Jan 24;69(2):166-175. doi: 10.4187/respcare.11329.
5
Automated detection and classification of patient-ventilator asynchrony by means of machine learning and simulated data.
Comput Methods Programs Biomed. 2023 Mar;230:107333. doi: 10.1016/j.cmpb.2022.107333. Epub 2023 Jan 2.
6
Redefining critical illness.
Nat Med. 2022 Jun;28(6):1141-1148. doi: 10.1038/s41591-022-01843-x. Epub 2022 Jun 17.
7
Classification and Quantification of Patient-Ventilator Interactions: We Need Consensus!
Respir Care. 2022 May;67(5):620-623. doi: 10.4187/respcare.10114.
8
The Effect of Clusters of Double Triggering and Ineffective Efforts in Critically Ill Patients.
Crit Care Med. 2022 Jul 1;50(7):e619-e629. doi: 10.1097/CCM.0000000000005471. Epub 2022 Feb 7.
9
A Taxonomy for Patient-Ventilator Interactions and a Method to Read Ventilator Waveforms.
Respir Care. 2022 Jan;67(1):129-148. doi: 10.4187/respcare.09316. Epub 2021 Sep 1.
10
The central nervous system during lung injury and mechanical ventilation: a narrative review.
Br J Anaesth. 2021 Oct;127(4):648-659. doi: 10.1016/j.bja.2021.05.038. Epub 2021 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验