Suppr超能文献

人工智能在患者-呼吸机不同步管理中的应用:一项范围综述。

Artificial intelligence in the management of patient-ventilator asynchronies: A scoping review.

作者信息

Muñoz Javier, Ruíz-Cacho Rocío, Fernández-Araujo Nerio José, Candela Alberto, Visedo Lourdes Carmen, Muñoz-Visedo Javier

机构信息

ICU. Hospital General Universitario Gregorio Marañón, Madrid, Spain.

ICU. Hospital General Universitario Gregorio Marañón, Madrid, Spain.

出版信息

Heart Lung. 2025 Sep-Oct;73:139-152. doi: 10.1016/j.hrtlng.2025.05.003. Epub 2025 May 23.

Abstract

BACKGROUND

Patient-ventilator asynchronies (PVAs) are frequent complications in mechanically ventilated patients, contributing to adverse outcomes such as ventilator-induced lung injury, prolonged mechanical ventilation, and increased mortality. Artificial intelligence (AI) has emerged as a promising tool for enhancing PVA detection, prediction, and optimization. Despite its growing potential, the full scope of AI applications in this field and persistent gaps in evidence remain inadequately explored.

OBJECTIVE

This scoping review examines the breadth of AI-based approaches for managing PVAs, identifying key methodologies, evaluating research trends, and highlighting limitations in the current literature.

METHODS

A comprehensive search was conducted in PubMed, Embase, Science Direct, IEEE Xplore, and the Cochrane Library without time restrictions. Extracted data included study objectives, AI methodologies, patient populations, performance metrics, and clinical outcomes. The findings were synthesized into thematic categories to map advancements and research gaps.

RESULTS

Twenty-six studies were identified that applied AI techniques to detect, predict, or optimize PVAs. The included studies employed a range of AI methodologies, including convolutional neural networks, long short-term memory networks, and hybrid algorithms. These models demonstrated high predictive performance, with accuracy ranging from 87 % to 99 % and AUROC values exceeding 0.98 for detecting complex asynchronous events. AI systems also showed promise in predicting weaning success and optimizing ventilatory settings through real-time patient-specific adjustments. However, challenges such as reliance on single-center datasets, inconsistencies in calibration, and limited implementation of explainable AI frameworks restrict their clinical applicability.

CONCLUSIONS

AI holds transformative potential in managing PVAs by enabling real-time detection, improved weaning prediction, and personalized ventilatory strategies. However, significant challenges remain, particularly the need for multi-center validation, standardized reporting protocols, and randomized controlled trials to evaluate clinical efficacy. Addressing these gaps is essential for integrating AI into routine critical care practice and transitioning from theoretical models to practical, real-world applications in intensive care units.

摘要

背景

患者-呼吸机不同步(PVAs)是机械通气患者常见的并发症,会导致诸如呼吸机相关性肺损伤、机械通气时间延长和死亡率增加等不良后果。人工智能(AI)已成为增强PVAs检测、预测和优化的有前景的工具。尽管其潜力不断增长,但该领域中AI应用的全貌以及证据方面的持续差距仍未得到充分探索。

目的

本范围综述考察了基于AI的管理PVAs方法的广度,确定关键方法,评估研究趋势,并突出当前文献中的局限性。

方法

在PubMed、Embase、Science Direct、IEEE Xplore和Cochrane图书馆进行了无时间限制的全面检索。提取的数据包括研究目标、AI方法、患者群体、性能指标和临床结果。研究结果被综合成主题类别,以描绘进展和研究差距。

结果

共识别出26项应用AI技术检测、预测或优化PVAs的研究。纳入的研究采用了一系列AI方法,包括卷积神经网络、长短期记忆网络和混合算法。这些模型表现出较高的预测性能,检测复杂异步事件的准确率在87%至99%之间,曲线下面积(AUROC)值超过0.98。AI系统在预测撤机成功以及通过针对患者的实时调整优化通气设置方面也显示出前景。然而,诸如依赖单中心数据集、校准不一致以及可解释AI框架的有限应用等挑战限制了它们的临床适用性。

结论

AI在管理PVAs方面具有变革潜力,可实现实时检测、改善撤机预测和个性化通气策略。然而,重大挑战仍然存在,特别是需要多中心验证、标准化报告方案以及随机对照试验来评估临床疗效。解决这些差距对于将AI整合到常规重症监护实践中以及从理论模型过渡到重症监护病房的实际临床应用至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验