Jana Chiranjibe, Hezam Ibrahim M
Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India.
Department of Statistics & Operations Research, College of Sciences, King Saud University, Riyadh, Saudi Arabia.
Heliyon. 2024 Mar 12;10(6):e27712. doi: 10.1016/j.heliyon.2024.e27712. eCollection 2024 Mar 30.
This paper presents new averaging operators, such as mpF Einstein weighted averaging (mpFEWA), mpF Einstein ordered weighted averaging (mpFEOWA), mpF Einstein hybrid weighted averaging (mpFEHWA), mpF Einstein weighted geometric (mpFEWG), and mpF Einstein hybrid weighted geometric (mpFEHWG), as well as new Einstein operations (mpFNs) for handling multi-polar fuzzy numbers. We evaluate these operators for idempotency, boundedness, monotonicity, and commutativity, and we design them to deal with multi-polar fuzzy numbers (mpFNs). Furthermore, the study investigates the use of these operators in MAGDM settings, namely mpFEWA and mpFEWG operators, to expand on this. Additionally, it proposes a procedure for determining the best site for a sponge iron production plant by use of the created MAGDM method. The EDAS method, which stands for "Evaluation based on Distance from Average Solution," verifies that the solutions are effective. Finally, the suggested model highlights the benefits and possible improvements provided by these creative strategies by comparing the new approach to conventional methods and evaluating its efficiency and practicality.
本文提出了新的平均算子,如多极模糊爱因斯坦加权平均(mpFEWA)、多极模糊爱因斯坦有序加权平均(mpFEOWA)、多极模糊爱因斯坦混合加权平均(mpFEHWA)、多极模糊爱因斯坦加权几何平均(mpFEWG)和多极模糊爱因斯坦混合加权几何平均(mpFEHWG),以及用于处理多极模糊数的新爱因斯坦运算(mpFNs)。我们评估了这些算子的幂等性、有界性、单调性和交换性,并将它们设计用于处理多极模糊数(mpFNs)。此外,本研究探讨了这些算子在多属性群决策(MAGDM)环境中的应用,即mpFEWA和mpFEWG算子,以进一步说明这一点。此外,它还提出了一种利用所创建的MAGDM方法确定海绵铁生产厂最佳选址的程序。代表“基于与平均解的距离进行评估”的EDAS方法验证了解的有效性。最后,通过将新方法与传统方法进行比较,并评估其效率和实用性,所提出的模型突出了这些创新策略所带来的好处和可能的改进。