Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-47, H1094 Budapest, Hungary.
HUNREN-SE Biophysical Virology Group, Tűzoltó Str. 37-47, H1094 Budapest, Hungary.
Nucleic Acids Res. 2024 Aug 12;52(14):8399-8418. doi: 10.1093/nar/gkae560.
TMPyP is a porphyrin capable of DNA binding and used in photodynamic therapy and G-quadruplex stabilization. Despite its broad applications, TMPyP's effect on DNA nanomechanics is unknown. Here we investigated, by manipulating λ-phage DNA with optical tweezers combined with microfluidics in equilibrium and perturbation kinetic experiments, how TMPyP influences DNA nanomechanics across wide ranges of TMPyP concentration (5-5120 nM), mechanical force (0-100 pN), NaCl concentration (0.01-1 M) and pulling rate (0.2-20 μm/s). Complex responses were recorded, for the analysis of which we introduced a simple mathematical model. TMPyP binding, which is a highly dynamic process, leads to dsDNA lengthening and softening. dsDNA stability increased at low (<10 nM) TMPyP concentrations, then decreased progressively upon increasing TMPyP concentration. Overstretch cooperativity decreased, due most likely to mechanical roadblocks of ssDNA-bound TMPyP. TMPyP binding increased ssDNA's contour length. The addition of NaCl at high (1 M) concentration competed with the TMPyP-evoked nanomechanical changes. Because the largest amplitude of the changes is induced by the pharmacologically relevant TMPyP concentration range, this porphyrin derivative may be used to tune DNA's structure and properties, hence control the wide array of biomolecular DNA-dependent processes including replication, transcription, condensation and repair.
TMPyP 是一种能够与 DNA 结合的卟啉,用于光动力疗法和 G-四链体稳定。尽管 TMPyP 有广泛的应用,但它对 DNA 纳米力学的影响尚不清楚。在这里,我们通过使用光学镊子结合微流控技术在平衡和扰动动力学实验中操纵 λ-噬菌体 DNA,研究了 TMPyP 在广泛的 TMPyP 浓度(5-5120 nM)、机械力(0-100 pN)、NaCl 浓度(0.01-1 M)和拉伸速率(0.2-20 μm/s)范围内对 DNA 纳米力学的影响。记录了复杂的响应,为了分析这些响应,我们引入了一个简单的数学模型。TMPyP 结合是一个高度动态的过程,导致 dsDNA 伸长和软化。dsDNA 稳定性在低(<10 nM)TMPyP 浓度下增加,然后随着 TMPyP 浓度的增加而逐渐降低。超拉伸协同性降低,这很可能是由于 ssDNA 结合的 TMPyP 造成的机械障碍。TMPyP 结合增加了 ssDNA 的轮廓长度。在高浓度(1 M)下添加 NaCl 会与 TMPyP 引起的纳米力学变化竞争。由于变化的最大幅度是由药理学相关的 TMPyP 浓度范围引起的,因此这种卟啉衍生物可用于调节 DNA 的结构和性质,从而控制包括复制、转录、浓缩和修复在内的广泛的依赖 DNA 的生物分子过程。