Suppr超能文献

采用适应性实验方法,以判定在不同床面材料配置、坡度以及有无堰的情况下的水力系数。

Acclimatize experimental approach to adjudicate hydraulic coefficients under different bed material configurations and slopes with and without weir.

作者信息

Amsie Ayalkie Belete, Ayalew Abebe Temesgen, Mada Zerihun Makayno, Finsa Mekuanent Muluneh

机构信息

Water Resources Research Center, Arba Minch University, Ethiopia.

Faculty of Hydraulic and Water Resources Engineering, Arba Minch University, Arba Minch, Ethiopia.

出版信息

Heliyon. 2024 Jun 1;10(11):e32162. doi: 10.1016/j.heliyon.2024.e32162. eCollection 2024 Jun 15.

Abstract

The primary purpose of this study was to evaluate the hydraulic coefficient of coarse aggregate grain size beds and hydraulic parameters under random and perpendicular bed configurations, as well as to explore the discharge coefficient for rectangular weirs. The research objectives were to compare flow resistance coefficients, evaluate the discharge coefficient for rectangular weirs, investigate the relationship between roughness coefficient and hydraulic parameters, and validate the theoretical hydraulic equation for the rectangular weir. This was achieved by analysing different bed configurations, bed slopes, and 20 and 30-mm bed materials. Sieve analysis was conducted on bed materials using American-standard sieves to determine their particle size distribution. The experiment was performed in a rectangular flume measuring 12 m in length, 0.31 m in width, and 0.45 m in depth. In a laboratory experiment, water was pumped into a flume using centrifugal pumps, and a rectangular weir was attached downstream for discharge measurement. The experiment investigated factors such as Manning roughness coefficient, bed material geometry, bed slope, and weir shapes. Approximately 1680 tests were conducted to analysed the impact of these factors on discharge and the coefficient of discharge. The average Manning's roughness coefficients for a grain size of 20 mm were 0.019 (with weir) and 0.019 (without weir) in a random bed configuration, and 0.028 (with weir) and 0.027 (without weir) in a perpendicular flow bed configuration. For a grain size of 30 mm, the coefficients were 0.023 (with weir) and 0.022 (without weir) in a random bed configuration, and 0.033 (with weir) and 0.026 (without weir) in a perpendicular flow bed configuration. The presence of a weir has affected Manning's roughness coefficients and discharge coefficients. With a weir, the roughness coefficients have generally been higher compared to without a weir, indicating increased roughness in the channel. The discharge coefficient for a rectangular weir with a grain size of 20 mm ranged from 0.39 to 0.84 (random bed) and 0.27 to 0.68 (perpendicular flow bed), while for a grain size of 30 mm it ranged from 0.31 to 0.81 (random bed) and 0.23 to 0.48 (perpendicular flow bed). The discharge coefficients have varied depending on the grain size and bed configuration, reflecting different flow efficiencies over the weir. Rough particles influenced flow and Manning's roughness coefficient value, then reduced discharge and velocity values. Under two bed configurations and slopes, beds with a grain size of 30 mm have higher roughness coefficients compared to those with a grain size of 20 mm. The models have shown that the roughness coefficient is inversely proportional to the discharge and directly proportional to the tailgate water levels. The coefficient of roughness and discharge coefficient are mainly influenced by the channel slopes, bed roughness, bed grain size, and bed configuration. A randomly configured bed with a 20 mm grain size gravel bed is preferred over a perpendicular bed configuration to handle high discharges. Using a 20 mm grain-size gravel bed in open-channel flow is more suitable than a 30 mm grain-size bed. Relying on the constant friction factor, Manning's n, is not recommended as it may result in design errors. These findings have the potential to improve hydraulic engineering design practices, enhancing the accuracy and efficiency of open-channel flow systems.

摘要

本研究的主要目的是评估粗骨料粒径床层在随机和垂直床层配置下的水力系数及水力参数,同时探究矩形堰的流量系数。研究目标包括比较流动阻力系数、评估矩形堰的流量系数、研究糙率系数与水力参数之间的关系,以及验证矩形堰的理论水力方程。这是通过分析不同的床层配置、床层坡度以及20毫米和30毫米的床层材料来实现的。使用美国标准筛对床层材料进行筛分分析,以确定其粒径分布。实验在一个长12米、宽0.31米、深0.45米的矩形水槽中进行。在实验室实验中,使用离心泵将水抽入水槽,并在下游安装一个矩形堰用于流量测量。该实验研究了诸如曼宁糙率系数、床层材料几何形状、床层坡度和堰的形状等因素。进行了约1680次试验,以分析这些因素对流量和流量系数的影响。在随机床层配置中,粒径为20毫米时,带堰情况下的平均曼宁糙率系数为0.019,不带堰时为0.019;在垂直流床层配置中,带堰时为0.028,不带堰时为0.027。对于粒径为30毫米的情况,随机床层配置中,带堰时系数为0.023,不带堰时为0.022;在垂直流床层配置中,带堰时为0.033,不带堰时为0.026。堰的存在影响了曼宁糙率系数和流量系数。有堰时,糙率系数通常比无堰时更高,表明渠道粗糙度增加。粒径为20毫米的矩形堰的流量系数在随机床层中为0.39至0.84,在垂直流床层中为0.27至0.68;对于粒径为30毫米的情况,随机床层中为0.31至0.81,垂直流床层中为0.23至0.48。流量系数因粒径和床层配置而异,反映了堰上不同的流动效率。粗糙颗粒影响水流和曼宁糙率系数值,进而降低流量和流速值。在两种床层配置和坡度下,粒径为30毫米的床层比粒径为20毫米的床层具有更高的糙率系数。模型表明,糙率系数与流量成反比,与尾门水位成正比。糙率系数和流量系数主要受渠道坡度、床面粗糙度、床层粒径和床层配置的影响。对于高流量情况,随机配置的20毫米粒径砾石床比垂直床层配置更可取。在明渠水流中使用20毫米粒径的砾石床比30毫米粒径的床更合适。不建议依赖恒定的摩擦系数曼宁糙率n,因为这可能导致设计误差。这些发现有可能改进水力工程设计实践,提高明渠水流系统的准确性和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ce/11214450/d4717af1c5a4/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验