文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

治疗诊断学数字孪生:个性化放射性药物治疗的概念、框架和路线图。

Theranostic digital twins: Concept, framework and roadmap towards personalized radiopharmaceutical therapies.

机构信息

Department of Radiology, University of British Columbia, Vancouver, Canada.

Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada.

出版信息

Theranostics. 2024 May 27;14(9):3404-3422. doi: 10.7150/thno.93973. eCollection 2024.


DOI:10.7150/thno.93973
PMID:38948052
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11209714/
Abstract

Radiopharmaceutical therapy (RPT) is a rapidly developing field of nuclear medicine, with several RPTs already well established in the treatment of several different types of cancers. However, the current approaches to RPTs often follow a somewhat inflexible "one size fits all" paradigm, where patients are administered the same amount of radioactivity per cycle regardless of their individual characteristics and features. This approach fails to consider inter-patient variations in radiopharmacokinetics, radiation biology, and immunological factors, which can significantly impact treatment outcomes. To address this limitation, we propose the development of theranostic digital twins (TDTs) to personalize RPTs based on actual patient data. Our proposed roadmap outlines the steps needed to create and refine TDTs that can optimize radiation dose to tumors while minimizing toxicity to organs at risk. The TDT models incorporate physiologically-based radiopharmacokinetic (PBRPK) models, which are additionally linked to a radiobiological optimizer and an immunological modulator, taking into account factors that influence RPT response. By using TDT models, we envisage the ability to perform virtual clinical trials, selecting therapies towards improved treatment outcomes while minimizing risks associated with secondary effects. This framework could empower practitioners to ultimately develop tailored RPT solutions for subgroups and individual patients, thus improving the precision, accuracy, and efficacy of treatments while minimizing risks to patients. By incorporating TDT models into RPTs, we can pave the way for a new era of precision medicine in cancer treatment

摘要

放射性药物治疗(RPT)是核医学领域的一个快速发展领域,已有几种 RPT 方法成功应用于多种不同类型癌症的治疗。然而,目前的 RPT 方法通常遵循一种相对僵化的“一刀切”模式,即无论患者的个体特征和表现如何,每个周期都给予相同数量的放射性活性。这种方法未能考虑放射性药代动力学、辐射生物学和免疫因素在患者间的差异,而这些因素可能会显著影响治疗效果。为了解决这一局限性,我们提出开发治疗性数字孪生体(TDT),根据实际患者数据来个性化 RPT。我们提出的路线图概述了创建和完善 TDT 的步骤,这些 TDT 可以优化肿瘤的放射剂量,同时最大限度地降低对风险器官的毒性。TDT 模型纳入了基于生理学的放射性药物动力学(PBRPK)模型,这些模型还与放射生物学优化器和免疫调节剂相连接,考虑到影响 RPT 反应的因素。通过使用 TDT 模型,我们设想能够进行虚拟临床试验,选择能够改善治疗效果同时降低与二次效应相关风险的治疗方法。该框架可以使临床医生能够最终为亚组和个体患者开发定制的 RPT 解决方案,从而提高治疗的精准度、准确性和疗效,同时降低患者的风险。通过将 TDT 模型纳入 RPT,我们可以为癌症治疗的精准医学新时代铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a8f/11209714/55c9f06a7c0d/thnov14p3404g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a8f/11209714/8d098ab90b5f/thnov14p3404g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a8f/11209714/81c3899659a7/thnov14p3404g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a8f/11209714/68c7d67ec1c4/thnov14p3404g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a8f/11209714/b65a6bc03cae/thnov14p3404g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a8f/11209714/3a13032113c2/thnov14p3404g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a8f/11209714/b6b22316b40c/thnov14p3404g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a8f/11209714/55c9f06a7c0d/thnov14p3404g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a8f/11209714/8d098ab90b5f/thnov14p3404g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a8f/11209714/81c3899659a7/thnov14p3404g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a8f/11209714/68c7d67ec1c4/thnov14p3404g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a8f/11209714/b65a6bc03cae/thnov14p3404g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a8f/11209714/3a13032113c2/thnov14p3404g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a8f/11209714/b6b22316b40c/thnov14p3404g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a8f/11209714/55c9f06a7c0d/thnov14p3404g007.jpg

相似文献

[1]
Theranostic digital twins: Concept, framework and roadmap towards personalized radiopharmaceutical therapies.

Theranostics. 2024

[2]
Computational Nuclear Oncology Toward Precision Radiopharmaceutical Therapies: Ethical, Regulatory, and Socioeconomic Dimensions of Theranostic Digital Twins.

J Nucl Med. 2025-5-1

[3]
Theranostic digital twins for personalized radiopharmaceutical therapies: Reimagining theranostics computational nuclear oncology.

Front Oncol. 2022-12-15

[4]
Computational Nuclear Oncology Toward Precision Radiopharmaceutical Therapies: Current Tools, Techniques, and Uncharted Territories.

J Nucl Med. 2025-4-1

[5]
Essentials of Theranostics: A Guide for Physicians and Medical Physicists.

Radiographics. 2024-1

[6]
Advances and future directions in radiopharmaceutical delivery for cancer treatment.

Expert Rev Anticancer Ther. 2025-4

[7]
Human-Artificial Intelligence Symbiotic Reporting for Theranostic Cancer Care.

Cancer Biother Radiopharm. 2025-3

[8]
Physiologically based radiopharmacokinetic (PBRPK) modeling to simulate and analyze radiopharmaceutical therapies: studies of non-linearities, multi-bolus injections, and albumin binding.

EJNMMI Radiopharm Chem. 2024-1-22

[9]
Dosimetry in Clinical Radiopharmaceutical Therapy of Cancer: Practicality Versus Perfection in Current Practice.

J Nucl Med. 2021-12

[10]
Personalized metronomic radiopharmaceutical therapy through injection profile optimization via physiologically based pharmacokinetic (PBPK) modeling.

Sci Rep. 2025-2-3

引用本文的文献

[1]
Artificial intelligence-powered innovations in radiotherapy: boosting efficiency and efficacy.

Med Rev (2021). 2025-2-28

[2]
Effects of Targeted Radionuclide Therapy on Cancer Cells Beyond the Ablative Radiation Dose.

Int J Mol Sci. 2025-7-20

[3]
Nanoparticle Therapeutics in Clinical Perspective: Classification, Marketed Products, and Regulatory Landscape.

Small. 2025-6-2

[4]
Exploring the Potential of Digital Twins in Cancer Treatment: A Narrative Review of Reviews.

J Clin Med. 2025-5-20

[5]
Computational Nuclear Oncology Toward Precision Radiopharmaceutical Therapies: Current Tools, Techniques, and Uncharted Territories.

J Nucl Med. 2025-4-1

[6]
Advancing Precision Oncology with Digital and Virtual Twins: A Scoping Review.

Cancers (Basel). 2024-11-13

[7]
Model-Informed Radiopharmaceutical Therapy Optimization: A Study on the Impact of PBPK Model Parameters on Physical, Biological, and Statistical Measures in Lu-PSMA Therapy.

Cancers (Basel). 2024-9-10

本文引用的文献

[1]
Personalized metronomic radiopharmaceutical therapy through injection profile optimization via physiologically based pharmacokinetic (PBPK) modeling.

Sci Rep. 2025-2-3

[2]
Intelligent oncology: The convergence of artificial intelligence and oncology.

J Natl Cancer Cent. 2022-12-5

[3]
The Current Landscape of Prostate-Specific Membrane Antigen (PSMA) Imaging Biomarkers for Aggressive Prostate Cancer.

Cancers (Basel). 2024-2-26

[4]
Physiologically based radiopharmacokinetic (PBRPK) modeling to simulate and analyze radiopharmaceutical therapies: studies of non-linearities, multi-bolus injections, and albumin binding.

EJNMMI Radiopharm Chem. 2024-1-22

[5]
Spatiotemporal modeling of radiopharmaceutical transport in solid tumors: Application to Lu-PSMA therapy of prostate cancer.

Comput Methods Programs Biomed. 2024-3

[6]
Generative artificial intelligence empowers digital twins in drug discovery and clinical trials.

Expert Opin Drug Discov. 2024

[7]
The real-world outcomes of Lutetium-177 PSMA-617 radioligand therapy in metastatic castration-resistant prostate cancer: Turkish Oncology Group multicenter study.

Int J Cancer. 2024-2-15

[8]
State of the Art in Prostate-specific Membrane Antigen-targeted Surgery-A Systematic Review.

Eur Urol Open Sci. 2023-6-16

[9]
Art and the science of generative AI.

Science. 2023-6-16

[10]
The predictive value of pretherapy [Ga]Ga-DOTA-TATE PET and biomarkers in [Lu]Lu-PRRT tumor dosimetry.

Eur J Nucl Med Mol Imaging. 2023-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索