Strigari Lidia, Schwarz Jazmin, Bradshaw Tyler, Brosch-Lenz Julia, Currie Geoffrey, El-Fakhri Georges, Jha Abhinav K, Mežinska Signe, Pandit-Taskar Neeta, Roncali Emilie, Shi Kuangyu, Uribe Carlos, Yusufaly Tahir, Zaidi Habib, Rahmim Arman, Saboury Babak
Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy;
Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York.
J Nucl Med. 2025 May 1;66(5):748-756. doi: 10.2967/jnumed.124.268186.
Computational nuclear oncology for precision radiopharmaceutical therapy (RPT) is a new frontier for theranostic treatment personalization. A key strategy relies on the possibility to incorporate clinical, biomarker, image-based, and dosimetric information in theranostic digital twins (TDTs) of patients to move beyond a one-size-fits-all approach. The TDT framework enables treatment optimization by real-time monitoring of the real-world system, simulation of different treatment scenarios, and prediction of resulting treatment outcomes, as well as facilitating collaboration and knowledge sharing among health care professionals adopting a harmonized TDT. To this aim, the major social, ethical, and regulatory challenges related to TDT implementation and adoption have been analyzed. The artificial intelligence-dosimetry working group of the Society of Nuclear Medicine and Molecular Imaging is actively proposing, motivating, and developing the field of computational nuclear oncology, a unified set of scientific principles and mathematic models that describe the hierarchy of etiologic mechanisms involved in RPT dose response. The major social, ethical, and regulatory challenges to realize TDTs have been highlighted from the literature and discussed within the working group, and possible solutions have been identified. This technology demands the implementation of advanced computational tools, harmonized and standardized collection of large real-time data, and modeling protocols to enable interoperability across institutions. However, current legislations limit data sharing despite TDTs' benefiting from such data. Although anonymizing data is often sufficient, ethical concerns may prevent sharing without patient consent. Approaches such as seeking ethical approval, adopting federated learning, and following guidelines can address this issue. Accurate and updated data input is crucial for reliable TDT output. Lack of reimbursement for data processing in treatment planning and verification poses an economic barrier. Ownership of TDTs, especially in interconnected systems, requires clear contracts to allocate liability. Complex contracts may hinder TDT implementation. Robust security measures are necessary to protect against data breaches. Cross-border data sharing complicates risk management without a global framework. A mechanism-based TDT framework can guide the community toward personalized dosimetry-driven RPT by facilitating the information exchange necessary to identify robust prognostic or predictive dosimetry and biomarkers. Although the future is bright, we caution that care must be taken to ensure that TDT technology is implemented in a socially responsible manner.
用于精准放射性药物治疗(RPT)的计算核肿瘤学是治疗诊断个性化的新前沿。一项关键策略依赖于将临床、生物标志物、基于图像和剂量测定信息纳入患者的治疗诊断数字孪生体(TDT),以超越一刀切的方法。TDT框架通过对现实世界系统的实时监测、不同治疗场景的模拟以及对治疗结果的预测来实现治疗优化,同时促进采用统一TDT的医疗保健专业人员之间的协作和知识共享。为此,分析了与TDT实施和采用相关的主要社会、伦理和监管挑战。核医学与分子成像协会的人工智能剂量测定工作组正在积极提议、推动和发展计算核肿瘤学领域,这是一套统一的科学原理和数学模型,描述了RPT剂量反应中涉及的病因机制层次。从文献中突出了实现TDT的主要社会、伦理和监管挑战,并在工作组内进行了讨论,并确定了可能的解决方案。这项技术需要先进计算工具的实施、大型实时数据的统一和标准化收集以及建模协议,以实现跨机构的互操作性。然而,尽管TDT受益于此类数据,但当前立法限制了数据共享。虽然匿名化数据通常就足够了,但伦理问题可能会阻止未经患者同意的共享。寻求伦理批准、采用联邦学习和遵循指南等方法可以解决这个问题。准确和最新的数据输入对于可靠的TDT输出至关重要。治疗计划和验证中数据处理缺乏报销构成了经济障碍。TDT的所有权,特别是在互联系统中,需要明确的合同来分配责任。复杂的合同可能会阻碍TDT的实施。强大的安全措施对于防止数据泄露是必要的。跨境数据共享在没有全球框架的情况下使风险管理变得复杂。基于机制的TDT框架可以通过促进识别强大的预后或预测剂量测定和生物标志物所需的信息交换,引导社区走向个性化剂量测定驱动的RPT。尽管前景光明,但我们提醒必须谨慎确保以对社会负责的方式实施TDT技术。