Haug Tobias, Lee Soovin, Kim M S
Quantum Research Center, <a href="https://ror.org/001kv2y39">Technology Innovation Institute</a>, Abu Dhabi, UAE.
Blackett Laboratory, <a href="https://ror.org/041kmwe10">Imperial College London</a>, SW7 2AZ, United Kingdom.
Phys Rev Lett. 2024 Jun 14;132(24):240602. doi: 10.1103/PhysRevLett.132.240602.
Stabilizer entropies (SEs) are measures of nonstabilizerness or "magic" that quantify the degree to which a state is described by stabilizers. SEs are especially interesting due to their connections to scrambling, localization and property testing. However, applications have been limited so far as previously known measurement protocols for SEs scale exponentially with the number of qubits. Here, we efficiently measure SEs for integer Rényi index n>1 via Bell measurements. The SE of N-qubit quantum states can be measured with O(n) copies and O(nN) classical computational time, where for even n we additionally require the complex conjugate of the state. We provide efficient bounds of various nonstabilizerness monotones that are intractable to compute beyond a few qubits. Using the IonQ quantum computer, we measure SEs of random Clifford circuits doped with non-Clifford gates and give bounds for the stabilizer fidelity, stabilizer extent, and robustness of magic. We provide efficient algorithms to measure Clifford-averaged 4n-point out-of-time-order correlators and multifractal flatness. With these measures we study the scrambling time of doped Clifford circuits and random Hamiltonian evolution depending on nonstabilizerness. Counterintuitively, random Hamiltonian evolution becomes less scrambled at long times, which we reveal with the multifractal flatness. Our results open up the exploration of nonstabilizerness with quantum computers.
稳定器熵(SEs)是对非稳定性或“魔力”的度量,它量化了稳定器描述一个状态的程度。由于SEs与量子混沌、局域化和性质测试相关,所以特别有趣。然而,到目前为止,其应用受到限制,因为之前已知的SEs测量协议随量子比特数呈指数增长。在这里,我们通过贝尔测量有效地测量整数Rényi指数n>1时的SEs。N量子比特量子态的SE可以用O(n)个副本和O(nN)的经典计算时间来测量,其中对于偶数n,我们还需要态的复共轭。我们给出了各种难以计算的非稳定性单调量的有效界,这些量在几个量子比特以上就很难计算了。利用IonQ量子计算机,我们测量了掺杂非克利福德门的随机克利福德电路的SEs,并给出了稳定器保真度、稳定器范围和魔力鲁棒性的界。我们提供了有效的算法来测量克利福德平均的4n点时间序外关联函数和多重分形平坦度。通过这些测量,我们研究了掺杂克利福德电路和随机哈密顿演化的量子混沌时间与非稳定性的关系。与直觉相反,随机哈密顿演化在长时间时变得不那么混沌,这一点我们通过多重分形平坦度揭示出来。我们的结果开启了利用量子计算机探索非稳定性的研究。