Lewis-Swan R J, Safavi-Naini A, Bollinger J J, Rey A M
JILA, NIST and Department of Physics, University of Colorado, Boulder, CO, 80309, USA.
Center for Theory of Quantum Matter, University of Colorado, Boulder, CO, 80309, USA.
Nat Commun. 2019 Apr 5;10(1):1581. doi: 10.1038/s41467-019-09436-y.
Scrambling is the process by which information stored in local degrees of freedom spreads over the many-body degrees of freedom of a quantum system, becoming inaccessible to local probes and apparently lost. Scrambling and entanglement can reconcile seemingly unrelated behaviors including thermalization of isolated quantum systems and information loss in black holes. Here, we demonstrate that fidelity out-of-time-order correlators (FOTOCs) can elucidate connections between scrambling, entanglement, ergodicity and quantum chaos (butterfly effect). We compute FOTOCs for the paradigmatic Dicke model, and show they can measure subsystem Rényi entropies and inform about quantum thermalization. Moreover, we illustrate why FOTOCs give access to a simple relation between quantum and classical Lyapunov exponents in a chaotic system without finite-size effects. Our results open a path to experimental use FOTOCs to explore scrambling, bounds on quantum information processing and investigation of black hole analogs in controllable quantum systems.
量子混沌是指存储在局部自由度中的信息在量子系统的多体自由度中扩散的过程,这使得局部探测器无法获取这些信息,信息似乎丢失了。量子混沌和量子纠缠可以协调看似不相关的行为,包括孤立量子系统的热化和黑洞中的信息丢失。在这里,我们证明保真度乱序关联函数(FOTOCs)可以阐明量子混沌、量子纠缠、遍历性和量子混沌(蝴蝶效应)之间的联系。我们计算了典型的迪克模型的保真度乱序关联函数,并表明它们可以测量子系统的雷尼熵,并为量子热化提供信息。此外,我们还说明了为什么保真度乱序关联函数可以在没有有限尺寸效应的混沌系统中获得量子和经典李雅普诺夫指数之间的简单关系。我们的结果为实验使用保真度乱序关联函数来探索量子混沌、量子信息处理的界限以及在可控量子系统中研究黑洞类比开辟了一条道路。