Xiao Jiayin, Li Si, Lin Tongxu, Zhu Jian, Yuan Xiaochen, Feng David Dagan, Sheng Bin
IEEE Trans Med Imaging. 2024 Dec;43(12):4404-4418. doi: 10.1109/TMI.2024.3421644. Epub 2024 Dec 2.
Deep learning approaches for multi-label Chest X-ray (CXR) images classification usually require large-scale datasets. However, acquiring such datasets with full annotations is costly, time-consuming, and prone to noisy labels. Therefore, we introduce a weakly supervised learning problem called Single Positive Multi-label Learning (SPML) into CXR images classification (abbreviated as SPML-CXR), in which only one positive label is annotated per image. A simple solution to SPML-CXR problem is to assume that all the unannotated pathological labels are negative, however, it might introduce false negative labels and decrease the model performance. To this end, we present a Multi-level Pseudo-label Consistency (MPC) framework for SPML-CXR. First, inspired by the pseudo-labeling and consistency regularization in semi-supervised learning, we construct a weak-to-strong consistency framework, where the model prediction on weakly-augmented image is treated as the pseudo label for supervising the model prediction on a strongly-augmented version of the same image, and define an Image-level Perturbation-based Consistency (IPC) regularization to recover the potential mislabeled positive labels. Besides, we incorporate Random Elastic Deformation (RED) as an additional strong augmentation to enhance the perturbation. Second, aiming to expand the perturbation space, we design a perturbation stream to the consistency framework at the feature-level and introduce a Feature-level Perturbation-based Consistency (FPC) regularization as a supplement. Third, we design a Transformer-based encoder module to explore the sample relationship within each mini-batch by a Batch-level Transformer-based Correlation (BTC) regularization. Extensive experiments on the CheXpert and MIMIC-CXR datasets have shown the effectiveness of our MPC framework for solving the SPML-CXR problem.
用于多标签胸部X光(CXR)图像分类的深度学习方法通常需要大规模数据集。然而,获取具有完整注释的此类数据集成本高昂、耗时且容易出现噪声标签。因此,我们将一个名为单正多标签学习(SPML)的弱监督学习问题引入到CXR图像分类中(简称为SPML-CXR),其中每张图像仅标注一个正标签。解决SPML-CXR问题的一个简单方法是假设所有未标注的病理标签都是负的,然而,这可能会引入假阴性标签并降低模型性能。为此,我们提出了一种用于SPML-CXR的多级伪标签一致性(MPC)框架。首先,受半监督学习中的伪标签和一致性正则化的启发,我们构建了一个从弱到强的一致性框架,其中对弱增强图像的模型预测被视为用于监督同一图像的强增强版本上的模型预测的伪标签,并定义了基于图像级扰动的一致性(IPC)正则化来恢复潜在的误标记正标签。此外,我们纳入随机弹性变形(RED)作为额外的强增强来增强扰动。其次,为了扩展扰动空间,我们在特征级别为一致性框架设计了一个扰动流,并引入基于特征级扰动的一致性(FPC)正则化作为补充。第三,我们设计了一个基于Transformer的编码器模块,通过基于批处理级Transformer的相关性(BTC)正则化来探索每个小批量内的样本关系。在CheXpert和MIMIC-CXR数据集上进行的大量实验表明了我们的MPC框架对于解决SPML-CXR问题的有效性。