Suppr超能文献

压缩不稳定性使细胞在纤维细胞外基质中产生极端致密的图案:离散模型预测。

Compressive instabilities enable cell-induced extreme densification patterns in the fibrous extracellular matrix: Discrete model predictions.

机构信息

Department of Engineering, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch sur Alzette, Luxembourg.

Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota, United States of America.

出版信息

PLoS Comput Biol. 2024 Jul 1;20(7):e1012238. doi: 10.1371/journal.pcbi.1012238. eCollection 2024 Jul.

Abstract

We present a new model and extensive computations that explain the dramatic remodelling undergone by a fibrous collagen extracellular matrix (ECM), when subjected to contractile mechanical forces from embedded cells or cell clusters. This remodelling creates complex patterns, comprising multiple narrow localised bands of severe densification and fiber alignment, extending far into the ECM, often joining distant cells or cell clusters (such as tumours). Most previous models cannot capture this behaviour, as they assume stable mechanical fiber response with stress an increasing function of fiber stretch, and a restriction to small displacements. Our fully nonlinear network model distinguishes between two types of single-fiber nonlinearity: fibers that undergo stable (supercritical) buckling (as in previous work) versus fibers that suffer unstable (subcritical) buckling collapse. The model allows unrestricted, arbitrarily large displacements (geometric nonlinearity). Our assumptions on single-fiber instability are supported by recent simulations and experiments on buckling of individual beams with a hierarchical microstructure, such as collagen fibers. We use simple scenarios to illustrate, for the first time, two distinct compressive-instability mechanisms at work in our model: unstable buckling collapse of single fibers, and snap-through of multiple-fiber groups. The latter is possible even when single fibers are stable. Through simulations of large fiber networks, we show how these instabilities lead to spatially extended patterns of densification, fiber alignment and ECM remodelling induced by cell contraction. Our model is simple, but describes a very complex, multi-stable energy landscape, using sophisticated numerical optimisation methods that overcome the difficulties caused by instabilities in large systems. Our work opens up new ways of understanding the unique biomechanics of fibrous-network ECM, by fully accounting for nonlinearity and associated loss of stability in fiber networks. Our results provide new insights on tumour invasion and metastasis.

摘要

我们提出了一个新模型和广泛的计算,解释了当嵌入的细胞或细胞簇施加收缩机械力时,纤维胶原细胞外基质(ECM)所经历的剧烈重塑。这种重塑会产生复杂的模式,包括多个狭窄的局部严重密集化和纤维排列带,延伸到 ECM 很远的地方,通常连接远处的细胞或细胞簇(如肿瘤)。大多数以前的模型无法捕捉到这种行为,因为它们假设纤维的机械响应是稳定的,其应力随纤维拉伸的增加而增加,并且受到小位移的限制。我们的全非线性网络模型区分了两种类型的单纤维非线性:经历稳定(超临界)屈曲的纤维(如前作所述)与遭受不稳定(亚临界)屈曲崩溃的纤维。该模型允许不受限制的、任意大的位移(几何非线性)。我们对单纤维不稳定性的假设得到了最近对具有层次微观结构的单个梁(如胶原纤维)的屈曲的模拟和实验的支持。我们使用简单的场景首次说明了我们模型中两种不同的压缩不稳定性机制:单纤维的不稳定屈曲崩溃和多纤维组的突跳。即使单纤维稳定,后者也是可能的。通过对大纤维网络的模拟,我们展示了这些不稳定性如何导致细胞收缩引起的密集化、纤维排列和 ECM 重塑的空间扩展模式。我们的模型很简单,但使用复杂的数值优化方法描述了一个非常复杂的多稳定能量景观,克服了大系统中不稳定性引起的困难。我们的工作通过充分考虑纤维网络的非线性和相关的不稳定性,为理解纤维网络 ECM 的独特生物力学提供了新的途径。我们的结果为肿瘤侵袭和转移提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5b9/11244807/6c0c031f8dda/pcbi.1012238.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验