Suppr超能文献

细胞利用相变相变来机械重塑纤维细胞外基质。

Cells exploit a phase transition to mechanically remodel the fibrous extracellular matrix.

机构信息

Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN, USA.

Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

J R Soc Interface. 2021 Feb;18(175):20200823. doi: 10.1098/rsif.2020.0823. Epub 2021 Feb 17.

Abstract

Through mechanical forces, biological cells remodel the surrounding collagen network, generating striking deformation patterns. Tethers-tracts of high densification and fibre alignment-form between cells, thinner bands emanate from cell clusters. While tethers facilitate cell migration and communication, how they form is unclear. Combining modelling, simulation and experiment, we show that tether formation is a densification phase transition of the extracellular matrix, caused by buckling instability of network fibres under cell-induced compression, featuring unexpected similarities with martensitic microstructures. Multiscale averaging yields a two-phase, bistable continuum energy landscape for fibrous collagen, with a densified/aligned second phase. Simulations predict strain discontinuities between the undensified and densified phase, which localizes within tethers as experimentally observed. In our experiments, active particles induce similar localized patterns as cells. This shows how cells exploit an instability to mechanically remodel the extracellular matrix simply by contracting, thereby facilitating mechanosensing, invasion and metastasis.

摘要

通过机械力,生物细胞重塑周围的胶原网络,产生引人注目的变形模式。细胞之间形成了连接物——高致密性和纤维排列的束——细胞簇发出较细的带状物。虽然连接物有助于细胞迁移和通讯,但它们是如何形成的尚不清楚。通过结合建模、模拟和实验,我们表明,连接物的形成是细胞诱导压缩下的网络纤维的屈曲不稳定性引起的细胞外基质的致密化相转变,其具有与马氏体微观结构出乎意料的相似性。多尺度平均产生了纤维胶原的两相、双稳态连续体能量景观,具有致密化/排列的第二相。模拟预测了未致密化和致密化相之间的应变不连续性,这在实验中被观察到在连接物内局部化。在我们的实验中,活性粒子诱导出与细胞类似的局部模式。这表明细胞如何通过收缩利用不稳定性来机械重塑细胞外基质,从而促进机械感知、入侵和转移。

相似文献

1
Cells exploit a phase transition to mechanically remodel the fibrous extracellular matrix.
J R Soc Interface. 2021 Feb;18(175):20200823. doi: 10.1098/rsif.2020.0823. Epub 2021 Feb 17.
2
Compressive instabilities enable cell-induced extreme densification patterns in the fibrous extracellular matrix: Discrete model predictions.
PLoS Comput Biol. 2024 Jul 1;20(7):e1012238. doi: 10.1371/journal.pcbi.1012238. eCollection 2024 Jul.
4
Unexpected softening of a fibrous matrix by contracting inclusions.
Acta Biomater. 2024 Mar 15;177:253-264. doi: 10.1016/j.actbio.2024.01.025. Epub 2024 Jan 23.
5
Multiscale Modelling of Fibres Dynamics and Cell Adhesion within Moving Boundary Cancer Invasion.
Bull Math Biol. 2019 Jul;81(7):2176-2219. doi: 10.1007/s11538-019-00598-w. Epub 2019 Apr 12.
6
Microbuckling of fibrin provides a mechanism for cell mechanosensing.
J R Soc Interface. 2015 Jul 6;12(108):20150320. doi: 10.1098/rsif.2015.0320.
7
Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces.
Biophys J. 2018 Jan 23;114(2):450-461. doi: 10.1016/j.bpj.2017.11.3739.
8
An investigation of the influence of extracellular matrix anisotropy and cell-matrix interactions on tissue architecture.
J Math Biol. 2016 Jun;72(7):1775-809. doi: 10.1007/s00285-015-0927-7. Epub 2015 Sep 2.
9
Remodeling of aligned fibrous extracellular matrix by encapsulated cells under mechanical stretching.
Acta Biomater. 2020 Aug;112:202-212. doi: 10.1016/j.actbio.2020.05.027. Epub 2020 May 27.
10
Mechanical Cell-Cell Communication in Fibrous Networks: The Importance of Network Geometry.
Bull Math Biol. 2017 Mar;79(3):498-524. doi: 10.1007/s11538-016-0242-5. Epub 2017 Jan 27.

引用本文的文献

1
Compressive instabilities enable cell-induced extreme densification patterns in the fibrous extracellular matrix: Discrete model predictions.
PLoS Comput Biol. 2024 Jul 1;20(7):e1012238. doi: 10.1371/journal.pcbi.1012238. eCollection 2024 Jul.
2
Modeling the extracellular matrix in cell migration and morphogenesis: a guide for the curious biologist.
Front Cell Dev Biol. 2024 Mar 1;12:1354132. doi: 10.3389/fcell.2024.1354132. eCollection 2024.
3
Unexpected softening of a fibrous matrix by contracting inclusions.
Acta Biomater. 2024 Mar 15;177:253-264. doi: 10.1016/j.actbio.2024.01.025. Epub 2024 Jan 23.
4
Modeling collagen fibril self-assembly from extracellular medium in embryonic tendon.
Biophys J. 2023 Aug 22;122(16):3219-3237. doi: 10.1016/j.bpj.2023.07.001. Epub 2023 Jul 5.
5
Effect of hyaluronic acid on microscale deformations of collagen gels.
J Mech Behav Biomed Mater. 2022 Nov;135:105465. doi: 10.1016/j.jmbbm.2022.105465. Epub 2022 Sep 14.
6
Percolation of collagen stress in a random network model of the alveolar wall.
Sci Rep. 2021 Aug 17;11(1):16654. doi: 10.1038/s41598-021-95911-w.
7
Collagen fibril assembly: New approaches to unanswered questions.
Matrix Biol Plus. 2021 Jul 13;12:100079. doi: 10.1016/j.mbplus.2021.100079. eCollection 2021 Dec.
8
Effect of matrix heterogeneity on cell mechanosensing.
Soft Matter. 2021 Nov 24;17(45):10263-10273. doi: 10.1039/d1sm00312g.

本文引用的文献

1
Mechanical Interaction between Cells Facilitates Molecular Transport.
Adv Biosyst. 2019 Dec;3(12):e1900192. doi: 10.1002/adbi.201900192. Epub 2019 Nov 4.
2
Force-dependent extracellular matrix remodeling by early-stage cancer cells alters diffusion and induces carcinoma-associated fibroblasts.
Biomaterials. 2020 Mar;234:119756. doi: 10.1016/j.biomaterials.2020.119756. Epub 2020 Jan 8.
4
Extracellular Matrix Stiffening Induces a Malignant Phenotypic Transition in Breast Epithelial Cells.
Cell Mol Bioeng. 2016 Oct 19;10(1):114-123. doi: 10.1007/s12195-016-0468-1. eCollection 2017 Feb.
5
Force chains in cell-cell mechanical communication.
J R Soc Interface. 2019 Oct 31;16(159):20190348. doi: 10.1098/rsif.2019.0348. Epub 2019 Oct 30.
6
Organization of associating or crosslinked actin filaments in confinement.
Cytoskeleton (Hoboken). 2019 Nov;76(11-12):532-548. doi: 10.1002/cm.21565. Epub 2019 Oct 31.
7
Semiflexible Biopolymers in Bundled Arrangements.
Polymers (Basel). 2016 Jul 28;8(8):274. doi: 10.3390/polym8080274.
8
Dynamic filopodial forces induce accumulation, damage, and plastic remodeling of 3D extracellular matrices.
PLoS Comput Biol. 2019 Apr 8;15(4):e1006684. doi: 10.1371/journal.pcbi.1006684. eCollection 2019 Apr.
10
Heterogeneity and nonaffinity of cell-induced matrix displacements.
Phys Rev E. 2018 Nov;98(5). doi: 10.1103/PhysRevE.98.052410. Epub 2018 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验