Wu Xiaodong, Liu Qi, Zheng Lifei, Lin Sijian, Zhang Yiqun, Song Yangyang, Wang Zhuqing
School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China.
Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China.
Adv Sci (Weinh). 2024 Sep;11(33):e2402767. doi: 10.1002/advs.202402767. Epub 2024 Jul 2.
Electronic fabrics exhibit desirable breathability, wearing comfort, and easy integration with garments. However, surficial deposition of electronically functional materials/compounds onto fabric substrates would consequentially alter their intrinsic properties (e.g., softness, permeability, biocompatibility, etc.). To address this issue, here, a strategy to innervate arbitrary commercial fabrics with unique spirally-layered iontronic fibrous (SLIF) sensors is presented to realize both mechanical and thermal sensing functionalities without sacrificing the intrinsic fabric properties. The mechanical sensing function is realized via mechanically regulating the interfacial ionic supercapacitance between two perpendicular SLIF sensors, while the thermal sensing function is achieved based on thermally modulating the intrinsic ionic impedance in a single SLIF sensor. The resultant SLIF sensor-innervated electronic fabrics exhibit high mechanical sensitivity of 81 N, superior thermal sensitivity of 34,400 Ω °C, and more importantly, greatly minimized mutual interference between the two sensing functions. As demonstrations, various smart garments are developed for the precise monitoring of diverse human physiological signals. Moreover, artificial intelligence-assisted object recognition with high-accuracy (97.8%) is demonstrated with a SLIF sensor-innervated smart glove. This work opens up a new path toward the facile construction of versatile smart garments for wearable healthcare, human-machine interfaces, and the Internet of Things.
电子织物具有理想的透气性、穿着舒适性,并且易于与服装集成。然而,将电子功能材料/化合物表面沉积到织物基材上会相应地改变其固有特性(如柔软度、透气性、生物相容性等)。为了解决这个问题,本文提出了一种用独特的螺旋层状离子电子纤维(SLIF)传感器赋予任意商用织物神经功能的策略,以实现机械和热传感功能,同时不牺牲织物的固有特性。机械传感功能通过机械调节两个垂直的SLIF传感器之间的界面离子超级电容来实现,而热传感功能则基于热调制单个SLIF传感器中的固有离子阻抗来实现。由此产生的由SLIF传感器赋予神经功能的电子织物表现出81 N的高机械灵敏度、34400 Ω/°C的卓越热灵敏度,更重要的是,两种传感功能之间的相互干扰大大降低。作为演示,开发了各种智能服装用于精确监测各种人体生理信号。此外,使用由SLIF传感器赋予神经功能的智能手套展示了高精度(97.8%)的人工智能辅助物体识别。这项工作为轻松构建用于可穿戴医疗保健、人机接口和物联网的多功能智能服装开辟了一条新途径。