Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
Science. 2023 May 19;380(6646):735-742. doi: 10.1126/science.ade0086. Epub 2023 May 18.
Artificial skin that simultaneously mimics sensory feedback and mechanical properties of natural skin holds substantial promise for next-generation robotic and medical devices. However, achieving such a biomimetic system that can seamlessly integrate with the human body remains a challenge. Through rational design and engineering of material properties, device structures, and system architectures, we realized a monolithic soft prosthetic electronic skin (e-skin). It is capable of multimodal perception, neuromorphic pulse-train signal generation, and closed-loop actuation. With a trilayer, high-permittivity elastomeric dielectric, we achieved a low subthreshold swing comparable to that of polycrystalline silicon transistors, a low operation voltage, low power consumption, and medium-scale circuit integration complexity for stretchable organic devices. Our e-skin mimics the biological sensorimotor loop, whereby a solid-state synaptic transistor elicits stronger actuation when a stimulus of increasing pressure is applied.
人工皮肤可以同时模拟自然皮肤的感觉反馈和机械性能,为下一代机器人和医疗设备带来了巨大的希望。然而,要实现能够与人体无缝集成的仿生系统仍然是一个挑战。通过对材料性能、器件结构和系统架构的合理设计和工程化,我们实现了一种整体式软假肢电子皮肤(e-skin)。它能够进行多模态感知、神经形态脉冲序列信号生成和闭环驱动。通过使用三层高介电常数弹性电介质,我们实现了低亚阈值摆幅,可与多晶硅晶体管相媲美,工作电压低、功耗低,并且可用于中等规模的电路集成复杂性的可拉伸有机器件。我们的 e-skin 模拟了生物感觉运动回路,当施加的压力逐渐增大时,固态突触晶体管会引发更强的驱动。
Adv Mater. 2021-5
Proc Natl Acad Sci U S A. 2022-6-7
Sci Adv. 2018-11-23
Sci Adv. 2025-8-15
Cyborg Bionic Syst. 2025-7-2
Adv Sci (Weinh). 2025-6-29