Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland.
Bundeswehr Institute of Radiobiology, Munich, Germany.
Int J Radiat Biol. 2024;100(8):1202-1212. doi: 10.1080/09553002.2024.2373751. Epub 2024 Jul 2.
Radiation-induced alterations in gene expression show great promise for dose reconstruction and for severity prediction of acute health effects. Among several genes explored as potential biomarkers, FDXR is widely used due to high upregulation in white blood cells following radiation exposure. Nonetheless, the absence of a standardized protocols for gene expression-based biodosimetry is a notable gap that warrants attention to enhance the accuracy, reproducibility and reliability. The objective of this study was to evaluate the sensitivity of transcriptional biodosimetry to differences in protocols used by different laboratories and establish guidelines for the calculation of calibration curve using FDXR expression data.
Two sets of irradiated blood samples generated during RENEB exercise were used. The first included samples irradiated with known doses including: 0, 0.25, 0.5, 1, 2, 3 and 4 Gy. The second set consisted of three 'blind' samples irradiated with 1.8 Gy, 0.4 Gy and a sham-irradiated sample. After irradiation, samples were incubated at 37 °C over 24 h and sent to participating laboratories, where RNA isolation and FDXR expression analysis by qPCR were performed using sets of primers/probes and reference genes specific for each laboratory. Calibration curves based on FDXR expression data were generated using non-linear and linear regression and used for dose estimation of 'blind' samples.
Dose estimates for sham-irradiated sample (0.020-0.024 Gy) and sample irradiated with 0.4 Gy (0.369-0.381 Gy) showed remarkable consistency across all laboratories, closely approximating the true doses regardless variation in primers/probes and reference genes used. For sample irradiated with 1.8 Gy the dose estimates were less precise (1.198-2.011 Gy) but remained within an acceptable margin for triage within the context of high dose range.
Methodological differences in reference genes and primers/probes used for FDXR expression measurement do not have a significant impact on the dose estimates generated, provided that all reference genes performed as expected and the primers/probes target a similar set of transcript variants. The preferred method for constructing a calibration curve based on FDXR expression data involves employing linear regression to establish a function that describes the relationship between the logarithm of absorbed dose and FDXR ΔCt values. However, one should be careful with using non-irradiated sample data as these cannot be accurately represented on a logarithmic scale. A standard curve generated using this approach can give reliable dose estimations in a dose range from 50 mGy to 4 Gy at least.
辐射诱导的基因表达改变在剂量重建和急性健康影响严重程度预测方面具有很大的潜力。在探索的几个作为潜在生物标志物的基因中,FDXR 由于在白细胞暴露于辐射后高度上调而被广泛用于基因表达生物剂量测定。尽管如此,缺乏标准化的基因表达生物剂量测定协议仍然是一个显著的差距,需要引起关注以提高准确性、重现性和可靠性。本研究的目的是评估转录生物剂量测定对不同实验室使用的不同方案的敏感性,并为使用 FDXR 表达数据计算校准曲线建立指南。
使用在 RENEB 运动中生成的两组辐照血液样本。第一组包括用已知剂量辐照的样本,包括:0、0.25、0.5、1、2、3 和 4Gy。第二组由三个“盲测”样本组成,辐照剂量为 1.8Gy、0.4Gy 和假照射样本。辐照后,将样品在 37°C 下孵育 24 小时,然后送到参与实验室,在那里使用特定于每个实验室的引物/探针和参考基因进行 RNA 分离和 FDXR 表达的 qPCR 分析。使用 FDXR 表达数据生成非线性和线性回归的校准曲线,并用于“盲测”样本的剂量估计。
所有实验室对假照射样本(0.020-0.024Gy)和 0.4Gy 照射样本(0.369-0.381Gy)的剂量估计值非常一致,几乎接近真实剂量,无论使用的引物/探针和参考基因如何变化。对于辐照剂量为 1.8Gy 的样本,剂量估计值不太精确(1.198-2.011Gy),但在高剂量范围内进行分类时仍处于可接受范围内。
FDXR 表达测量中使用的参考基因和引物/探针的方法学差异不会对生成的剂量估计值产生重大影响,前提是所有参考基因都按预期表现,并且引物/探针针对相似的转录变体集。基于 FDXR 表达数据构建校准曲线的首选方法是使用线性回归来建立描述对数吸收剂量与 FDXR ΔCt 值之间关系的函数。但是,在用未辐照样本数据时需要小心,因为这些数据不能在对数尺度上准确表示。使用这种方法生成的标准曲线至少可以在 50mGy 至 4Gy 的剂量范围内提供可靠的剂量估计值。