Suppr超能文献

为生物剂量测定目的,在不同实验室检测辐射诱导的外周血体内和体外基因表达变化:首次RENE基因表达研究

Examining Radiation-Induced In Vivo and In Vitro Gene Expression Changes of the Peripheral Blood in Different Laboratories for Biodosimetry Purposes: First RENEB Gene Expression Study.

作者信息

Abend M, Badie C, Quintens R, Kriehuber R, Manning G, Macaeva E, Njima M, Oskamp D, Strunz S, Moertl S, Doucha-Senf S, Dahlke S, Menzel J, Port M

机构信息

a  Bundeswehr Institute of Radiobiology, Munich, Germany;

b  Cancer Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, United Kingdom;

出版信息

Radiat Res. 2016 Feb;185(2):109-23. doi: 10.1667/RR14221.1. Epub 2016 Feb 1.

Abstract

The risk of a large-scale event leading to acute radiation exposure necessitates the development of high-throughput methods for providing rapid individual dose estimates. Our work addresses three goals, which align with the directive of the European Union's Realizing the European Network of Biodosimetry project (EU-RENB): 1. To examine the suitability of different gene expression platforms for biodosimetry purposes; 2. To perform this examination using blood samples collected from prostate cancer patients (in vivo) and from healthy donors (in vitro); and 3. To compare radiation-induced gene expression changes of the in vivo with in vitro blood samples. For the in vitro part of this study, EDTA-treated whole blood was irradiated immediately after venipuncture using single X-ray doses (1 Gy/min(-1) dose rate, 100 keV). Blood samples used to generate calibration curves as well as 10 coded (blinded) samples (0-4 Gy dose range) were incubated for 24 h in vitro, lysed and shipped on wet ice. For the in vivo part of the study PAXgene tubes were used and peripheral blood (2.5 ml) was collected from prostate cancer patients before and 24 h after the first fractionated 2 Gy dose of localized radiotherapy to the pelvis [linear accelerator (LINAC), 580 MU/min, exposure 1-1.5 min]. Assays were run in each laboratory according to locally established protocols using either microarray platforms (2 laboratories) or qRT-PCR (2 laboratories). Report times on dose estimates were documented. The mean absolute difference of estimated doses relative to the true doses (Gy) were calculated. Doses were also merged into binary categories reflecting aspects of clinical/diagnostic relevance. For the in vitro part of the study, the earliest report time on dose estimates was 7 h for qRT-PCR and 35 h for microarrays. Methodological variance of gene expression measurements (CV ≤10% for technical replicates) and interindividual variance (≤twofold for all genes) were low. Dose estimates based on one gene, ferredoxin reductase (FDXR), using qRT-PCR were as precise as dose estimates based on multiple genes using microarrays, but the precision decreased at doses ≥2 Gy. Binary dose categories comprising, for example, unexposed compared with exposed samples, could be completely discriminated with most of our methods. Exposed prostate cancer blood samples (n = 4) could be completely discriminated from unexposed blood samples (n = 4, P < 0.03, two-sided Fisher's exact test) without individual controls. This could be performed by introducing an in vitro-to-in vivo correction factor of FDXR, which varied among the laboratories. After that the in vitro-constructed calibration curves could be used for dose estimation of the in vivo exposed prostate cancer blood samples within an accuracy window of ±0.5 Gy in both contributing qRT-PCR laboratories. In conclusion, early and precise dose estimates can be performed, in particular at doses ≤2 Gy in vitro. Blood samples of prostate cancer patients exposed to 0.09-0.017 Gy could be completely discriminated from pre-exposure blood samples with the doses successfully estimated using adjusted in vitro-constructed calibration curves.

摘要

大规模事件导致急性辐射暴露的风险使得开发用于快速提供个体剂量估计的高通量方法成为必要。我们的工作旨在实现三个目标,这与欧盟“实现欧洲生物剂量测定网络”项目(EU - RENB)的指令一致:1. 检查不同基因表达平台用于生物剂量测定目的的适用性;2. 使用从前列腺癌患者(体内)和健康供体(体外)采集的血液样本进行此项检查;3. 比较体内和体外血液样本中辐射诱导的基因表达变化。对于本研究的体外部分,静脉穿刺后立即使用单X射线剂量(剂量率1 Gy/min(-1),100 keV)对乙二胺四乙酸(EDTA)处理的全血进行照射。用于生成校准曲线的血液样本以及10个编码(盲法)样本(剂量范围0 - 4 Gy)在体外孵育24小时,裂解后在湿冰上运送。对于本研究的体内部分,使用PAXgene管,在前列腺癌患者接受盆腔局部放疗的第一次2 Gy分次剂量(直线加速器(LINAC),580 MU/min,照射1 - 1.5分钟)之前和之后24小时采集外周血(2.5 ml)。每个实验室根据当地制定的方案,使用微阵列平台(2个实验室)或定量逆转录聚合酶链反应(qRT - PCR)(2个实验室)进行检测。记录剂量估计的报告时间。计算估计剂量相对于真实剂量(Gy)的平均绝对差值。剂量也合并为反映临床/诊断相关性的二元类别。对于本研究的体外部分,qRT - PCR剂量估计的最早报告时间为7小时,微阵列为35小时。基因表达测量的方法学变异(技术重复的变异系数(CV)≤10%)和个体间变异(所有基因≤两倍)较低。使用qRT - PCR基于一个基因(铁氧化还原蛋白还原酶(FDXR))的剂量估计与基于微阵列多个基因的剂量估计一样精确,但在剂量≥2 Gy时精度下降。例如,包含未暴露与暴露样本的二元剂量类别,我们的大多数方法都能完全区分。未设个体对照的情况下,暴露的前列腺癌血液样本(n = 4)与未暴露的血液样本(n = 4)能够完全区分(P < 0.03,双侧Fisher精确检验)。这可以通过引入FDXR的体外到体内校正因子来实现,该因子在不同实验室有所不同。之后,体外构建的校准曲线可用于在两个参与的qRT - PCR实验室中,在±0.5 Gy的精度范围内对体内暴露的前列腺癌血液样本进行剂量估计。总之,特别是在体外剂量≤2 Gy时,可以进行早期且精确的剂量估计。使用调整后的体外构建校准曲线成功估计剂量后,暴露于0.09 - 0.017 Gy的前列腺癌患者血液样本能够与暴露前血液样本完全区分。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验