Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Dpto. de Química Inorgánica, Analítica y Química Física, Ciudad Universitaria, Pabellón II, 1er piso, C1428EHA Buenos Aires, Argentina.
Universidad de Buenos Aires, Facultad de Agronomía, Área de Educación Agropecuaria y Ambiental, Av. San Martín 4453, 1417 Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Fisiológicas y Ecológicas vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina.
J Photochem Photobiol B. 2024 Aug;257:112965. doi: 10.1016/j.jphotobiol.2024.112965. Epub 2024 Jun 27.
This research aimed to develop natural plant systems to serve as biological sentinels for the detection of organophosphate pesticides in the environment. The working hypothesis was that the presence of the pesticide in the environment caused changes in the content of pigments and in the photosynthetic functioning of the plant, which could be evaluated non-destructively through the analysis of reflected light and emitted fluorescence. The objective of the research was to furnish in vivo indicators derived from spectroscopic parameters, serving as early alert signals for the presence of organophosphates in the environment. In this context, the effects of two pesticides, Chlorpyrifos and Dimethoate, on the spectroscopic properties of aquatic plants (Vallisneria nana and Spathyfillum wallisii) were studied. Chlorophyll-a variable fluorescence allowed monitoring both pesticides' presence before any damage was observed at the naked eye, with the analysis of the fast transient (OJIP curve) proving more responsive than Kautsky kinetics, steady-state fluorescence, or reflectance measurements. Pesticides produced a decrease in the maximum quantum yield of PSII photochemistry, in the proportion of PSII photochemical deexcitation relative to PSII non photochemical decay and in the probability that trapped excitons moved electrons into the photosynthetic transport chain beyond Q. Additionally, an increase in the proportion of absorbed energy being dissipated as heat rather than being utilized in the photosynthetic process, was notorious. The pesticides induced a higher deactivation of chlorophyll excited states by photophysical pathways (including fluorescence) with a decrease in the quantum yields of photosystem II and heat dissipation by non-photochemical quenching. The investigated aquatic plants served as sentinels for the presence of pesticides in the environment, with the alert signal starting within the first milliseconds of electronic transport in the photosynthetic chain. Organophosphates damage animals' central nervous systems similarly to certain compounds found in chemical weapons, thus raising the possibility that sentinel plants could potentially signal the presence of such weapons.
本研究旨在开发自然植物系统,作为环境中有机磷农药检测的生物哨兵。工作假设是,环境中农药的存在导致植物中色素含量和光合作用功能发生变化,这些变化可以通过分析反射光和发射荧光来进行非破坏性评估。本研究的目的是提供源自光谱参数的体内指示剂,作为环境中有机磷存在的早期预警信号。在这种情况下,研究了两种农药(毒死蜱和乐果)对水生植物(水蕹菜和穗花狐尾藻)光谱特性的影响。叶绿素-a 可变荧光允许在肉眼观察到任何损伤之前监测两种农药的存在,快速瞬态(OJIP 曲线)的分析比 Kautsky 动力学、稳态荧光或反射率测量更灵敏。农药导致 PSII 光化学的最大量子产量下降,PSII 光化学去激发相对于 PSII 非光化学衰减的比例下降,以及被捕获的激子将电子转移到光合作用运输链中的 Q 点以上的概率下降。此外,吸收的能量作为热而不是在光合作用过程中被利用的比例增加是显而易见的。与通过光物理途径(包括荧光)失活的叶绿素激发态相比,农药诱导了更高的失活,这导致光系统 II 的量子产率和非光化学猝灭引起的热耗散降低。研究的水生植物作为环境中农药存在的哨兵,警报信号在光合作用链中电子传递的最初几毫秒内开始。有机磷类似某些化学武器中的化合物,会损害动物的中枢神经系统,因此,哨兵植物有可能潜在地发出此类武器存在的信号。