Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267.
Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267.
J Neurosci. 2024 Aug 7;44(32):e0170242024. doi: 10.1523/JNEUROSCI.0170-24.2024.
Recent work demonstrated that activation of spinal D1 and D5 dopamine receptors (D1/D5Rs) facilitates non-Hebbian long-term potentiation (LTP) at primary afferent synapses onto spinal projection neurons. However, the cellular localization of the D1/D5Rs driving non-Hebbian LTP in spinal nociceptive circuits remains unknown, and it is also unclear whether D1/D5R signaling must occur concurrently with sensory input in order to promote non-Hebbian LTP at these synapses. Here we investigate these issues using cell-type-selective knockdown of D1Rs or D5Rs from lamina I spinoparabrachial neurons, dorsal root ganglion (DRG) neurons, or astrocytes in adult mice of either sex using Cre recombinase-based genetic strategies. The LTP evoked by low-frequency stimulation of primary afferents in the presence of the selective D1/D5R agonist SKF82958 persisted following the knockdown of D1R or D5R in spinoparabrachial neurons, suggesting that postsynaptic D1/D5R signaling was dispensable for non-Hebbian plasticity at sensory synapses onto these key output neurons of the superficial dorsal horn (SDH). Similarly, the knockdown of D1Rs or D5Rs in DRG neurons failed to influence SKF82958-enabled LTP in lamina I projection neurons. In contrast, SKF82958-induced LTP was suppressed by the knockdown of D1R or D5R in spinal astrocytes. Furthermore, the data indicate that the activation of D1R/D5Rs in spinal astrocytes can either retroactively or proactively drive non-Hebbian LTP in spinoparabrachial neurons. Collectively, these results suggest that dopaminergic signaling in astrocytes can strongly promote activity-dependent LTP in the SDH, which is predicted to significantly enhance the amplification of ascending nociceptive transmission from the spinal cord to the brain.
最近的研究工作表明,激活脊髓 D1 和 D5 多巴胺受体(D1/D5R)可促进初级传入突触到脊髓投射神经元的非赫布型长时程增强(LTP)。然而,在脊髓伤害性回路中驱动非赫布型 LTP 的 D1/D5R 的细胞定位仍然未知,也不清楚 D1/D5R 信号是否必须与感觉输入同时发生才能促进这些突触的非赫布型 LTP。在这里,我们使用 Cre 重组酶基于遗传策略,从成年雄性或雌性小鼠的 I 层脊髓-臂旁核神经元、背根神经节(DRG)神经元或星形胶质细胞中选择性敲低 D1R 或 D5R,来研究这些问题。在选择性 D1/D5R 激动剂 SKF82958 的存在下,初级传入纤维的低频刺激诱发的 LTP 在脊髓-臂旁核神经元中敲低 D1R 或 D5R 后仍然存在,这表明突触后 D1/D5R 信号对于这些浅层背角(SDH)关键输出神经元上的感觉突触的非赫布型可塑性是可有可无的。同样,DRG 神经元中 D1R 或 D5R 的敲低也未能影响 SKF82958 启用的 I 层投射神经元中的 LTP。相比之下,脊髓星形胶质细胞中 D1R 或 D5R 的敲低则抑制了 SKF82958 诱导的 LTP。此外,数据表明,脊髓星形胶质细胞中 D1R/D5R 的激活可以逆行或主动驱动脊髓-臂旁核神经元中的非赫布型 LTP。总的来说,这些结果表明,星形胶质细胞中的多巴胺能信号可以强烈促进 SDH 中的活性依赖性 LTP,这预计会显著增强从脊髓到大脑的上行伤害性传递的放大。