Suppr超能文献

电子源直接数据采集在肿瘤学研究者发起的临床试验中的效率。

Efficiency of eSource Direct Data Capture in Investigator-Initiated Clinical Trials in Oncology.

机构信息

Division of Biostatistics, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.

A2 Healthcare Corporation, 1-4-12, Utsubohommachi, Nishi-Ku, Osaka, Japan.

出版信息

Ther Innov Regul Sci. 2024 Nov;58(6):1031-1041. doi: 10.1007/s43441-024-00671-0. Epub 2024 Jul 2.

Abstract

BACKGROUND

Clinical trials have become larger and more complex. Thus, eSource should be used to enhance efficiency. This study aimed to evaluate the impact of the multisite implementation of eSource direct data capture (DDC), which we define as eCRFs for direct data entry in this study, on efficiency by analyzing data from a single investigator-initiated clinical trial in oncology.

METHODS

Operational data associated with the targeted study conducted in Japan was used to analyze time from data occurrence to data entry and data finalization, and number of visits to the site and time spent at the site by clinical research associates (CRAs). Additionally, simulations were performed on the change in hours at the clinical sites during the implementation of eSource DDC.

RESULTS

No difference in time from data occurrence to data entry was observed between the DDC and the transcribed data fields. However, the DDC fields could be finalized 4 days earlier than the non-DDC fields. Additionally, although no difference was observed in the number of visits for source data verification (SDV) by CRAs, a comparison among sites that introduced eSource DDC and those that did not showed that the time spent at the site for SDV was reduced. Furthermore, the simulation results indicated that even a small amount of data to be collected or a small percentage of DDC-capable items may lead to greater efficiency when the number of subjects per site is significant.

CONCLUSIONS

The implementation of eSource DDC may enhance efficiency depending on the study framework and type and number of items to be collected.

摘要

背景

临床试验变得越来越大且越来越复杂。因此,应使用电子源来提高效率。本研究旨在通过分析来自单个肿瘤学研究者发起的临床试验的数据,评估多站点实施电子源直接数据采集(DDC)对效率的影响,我们将其定义为直接数据输入电子 CRF。

方法

使用与在日本进行的目标研究相关的操作数据来分析数据发生到数据录入和数据定稿的时间,以及临床研究助理(CRA)到现场的访问次数和在现场花费的时间。此外,还对实施电子源 DDC 期间临床现场的时间变化进行了模拟。

结果

在数据发生到数据录入的时间方面,DDC 与转录数据字段之间没有差异。然而,DDC 字段可以比非 DDC 字段提前 4 天定稿。此外,虽然 CRA 对源数据验证(SDV)的访问次数没有差异,但对实施了电子源 DDC 的站点与未实施的站点进行比较显示,用于 SDV 的现场时间减少了。此外,模拟结果表明,即使是要收集的少量数据或具有 DDC 功能的项目的一小部分百分比,如果每个站点的受试者数量显著,也可能会提高效率。

结论

电子源 DDC 的实施可能会根据研究框架以及要收集的项目的类型和数量来提高效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f04c/11530566/f950d27c8a46/43441_2024_671_Fig1_HTML.jpg

相似文献

1
Efficiency of eSource Direct Data Capture in Investigator-Initiated Clinical Trials in Oncology.
Ther Innov Regul Sci. 2024 Nov;58(6):1031-1041. doi: 10.1007/s43441-024-00671-0. Epub 2024 Jul 2.
3
Home treatment for mental health problems: a systematic review.
Health Technol Assess. 2001;5(15):1-139. doi: 10.3310/hta5150.
4
Behavioral interventions to reduce risk for sexual transmission of HIV among men who have sex with men.
Cochrane Database Syst Rev. 2008 Jul 16(3):CD001230. doi: 10.1002/14651858.CD001230.pub2.
5
Eliciting adverse effects data from participants in clinical trials.
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.
6
Sertindole for schizophrenia.
Cochrane Database Syst Rev. 2005 Jul 20;2005(3):CD001715. doi: 10.1002/14651858.CD001715.pub2.
8
Monitoring strategies for clinical intervention studies.
Cochrane Database Syst Rev. 2021 Dec 8;12(12):MR000051. doi: 10.1002/14651858.MR000051.pub2.
9
The effect of sample site and collection procedure on identification of SARS-CoV-2 infection.
Cochrane Database Syst Rev. 2024 Dec 16;12(12):CD014780. doi: 10.1002/14651858.CD014780.
10
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.

本文引用的文献

1
eSource-Enabled vs. Traditional Clinical Trial Data Collection Methods: A Site-Level Economic Analysis.
Stud Health Technol Inform. 2020 Jun 16;270:961-965. doi: 10.3233/SHTI200304.
2
Optimizing the Use of Electronic Data Sources in Clinical Trials: The Landscape, Part 1.
Ther Innov Regul Sci. 2016 Nov;50(6):682-696. doi: 10.1177/2168479016670689. Epub 2016 Oct 14.
3
Optimizing the Use of Electronic Data Sources in Clinical Trials: The Technology Landscape.
Ther Innov Regul Sci. 2017 Sep;51(5):551-567. doi: 10.1177/2168479017718875. Epub 2017 Jul 11.
4
New Benchmarks Characterizing Growth in Protocol Design Complexity.
Ther Innov Regul Sci. 2018 Jan;52(1):22-28. doi: 10.1177/2168479017713039. Epub 2017 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验