Suppr超能文献

基于屈的核与苯并噻吩受体对有机太阳能电池光伏性能的协同效应研究。

Exploration of the synergistic effect of chrysene-based core and benzothiophene acceptors on photovoltaic properties of organic solar cells.

作者信息

Shafiq Iqra, Kousar Shehla, Rasool Faiz, Ahamad Tansir, Munawar Khurram Shahzad, Bullo Saifullah, Ojha Suvash Chandra

机构信息

Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan.

Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan.

出版信息

Sci Rep. 2024 Jul 2;14(1):15105. doi: 10.1038/s41598-024-65459-6.

Abstract

To improve the efficacy of organic solar cells (OSCs), novel small acceptor molecules (CTD1-CTD7) were designed by modification at the terminal acceptors of reference compound CTR. The optoelectronic properties of the investigated compounds (CTD1-CTD7) were accomplished by employing density functional theory (DFT) in combination with time-dependent density functional theory (TD-DFT). The M06 functional along with a 6-311G(d,p) basis set was utilized for calculating various parameters such as: frontier molecular orbitals (FMO), absorption maxima (λ), binding energy (E), transition density matrix (TDM), density of states (DOS), and open circuit voltage (V) of entitled chromophores. A red shift in the absorption spectra of all designed chromophores (CTD1-CTD7) was observed as compared to CTR, accompanied by low excitation energy. Particularly, CTD4 was characterized by the highest λ value of 685.791 nm and the lowest transition energy value of 1.801 eV which might be ascribed to the robust electron-withdrawing end-capped acceptor group. The observed reduced binding energy (Eb) was linked to an elevated rate of exciton dissociation and substantial charge transfer from central core in HOMO towards terminal acceptors in LUMO. These results were further supported by the outcomes from TDM and DOS analyses. Among all entitled chromophores, CTD4 exhibited bathochromic shift (685.791 nm), minimum HOMO/LUMO band gap of 2.347 eV with greater CT. Thus, it can be concluded that by employing molecular engineering with efficient acceptor moieties, the efficiency of photovoltaic materials could be improved.

摘要

为了提高有机太阳能电池(OSC)的效率,通过对参考化合物CTR的末端受体进行修饰,设计了新型小分子受体(CTD1 - CTD7)。采用密度泛函理论(DFT)及时域密度泛函理论(TD - DFT)来研究这些化合物(CTD1 - CTD7)的光电性质。使用M06泛函和6 - 311G(d,p)基组来计算各种参数,如:前沿分子轨道(FMO)、吸收最大值(λ)、结合能(E)、跃迁密度矩阵(TDM)、态密度(DOS)以及上述发色团的开路电压(V)。与CTR相比,所有设计的发色团(CTD1 - CTD7)的吸收光谱均出现红移,且激发能较低。特别是,CTD4的特征在于最高的λ值为685.791 nm,最低的跃迁能量值为1.801 eV,这可能归因于强大的吸电子端封受体基团。观察到的结合能(Eb)降低与激子解离速率的提高以及从HOMO中的中心核到LUMO中的末端受体的大量电荷转移有关。TDM和DOS分析的结果进一步支持了这些结果。在所有上述发色团中,CTD4表现出红移(685.791 nm),最小的HOMO/LUMO带隙为2.347 eV,且电荷转移更大。因此,可以得出结论,通过采用具有高效受体部分的分子工程,可以提高光伏材料的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2fe/11219797/4f52a7e15022/41598_2024_65459_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验