Guo Yufei, Zhuo Fengjun, Li Hang
School of Physics and Electronics, Henan University, Kaifeng 475004, People's Republic of China.
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China.
J Phys Condens Matter. 2024 Jul 15;36(41). doi: 10.1088/1361-648X/ad5eea.
While the recent prediction and observation of magnetic skyrmions bears inspiring promise for next-generation spintronic devices, how to detect and track their position becomes an important issue. In this work, we investigate the spin transport in a two-dimensional magnetic nanoribbon with the Hall-bar geometry in the presence of Rashba spin-orbit coupling and magnetic skyrmions. We employ the Kwant tight-binding code to compute the Hall conductance and local spin-polarized current density. We consider two versions of the model: One with single skyrmion and one with two separate skyrmions. It is found that the size and position of the skyrmions strongly modulate the Hall conductance near the Hall-bar position. The geometry of the Hall bar also has a strong influence on the Hall conductance of the system. With the decreasing of the width of Hall leads, the peak of Hall conductance becomes sharper. We also show the spatial distribution of the spin-polarized current density around a skyrmion located at different positions. We extend this study toward two separate skyrmions, where the Hall conductance also reveals a sizable dependence on the position of the skyrmions and their distance. Our numerical analysis offers the possibility of electrically detecting the skyrmion position, which could have potential applications in ultrahigh-density storage design.
尽管最近对磁性斯格明子的预测和观测为下一代自旋电子器件带来了令人鼓舞的前景,但如何检测和追踪它们的位置成为了一个重要问题。在这项工作中,我们研究了在存在 Rashba 自旋轨道耦合和磁性斯格明子的情况下,具有霍尔条形几何结构的二维磁性纳米带中的自旋输运。我们使用 Kwant 紧束缚代码来计算霍尔电导和局部自旋极化电流密度。我们考虑了该模型的两个版本:一个带有单个斯格明子,另一个带有两个分开的斯格明子。结果发现,斯格明子的大小和位置强烈调制了霍尔条形位置附近的霍尔电导。霍尔条形的几何形状也对系统的霍尔电导有很大影响。随着霍尔引线宽度的减小,霍尔电导的峰值变得更尖锐。我们还展示了位于不同位置的斯格明子周围自旋极化电流密度的空间分布。我们将这项研究扩展到两个分开的斯格明子,其中霍尔电导也显示出对斯格明子的位置及其间距有相当大的依赖性。我们的数值分析提供了通过电学方法检测斯格明子位置的可能性,这在超高密度存储设计中可能具有潜在应用。