Shi Hanqing, Zhang Jingwei, Xi Yilian, Li Heping, Chen Jingyi, Ahmed Iftikhar, Ma Zhijie, Cheng Ningyan, Zhou Xiang, Jin Haonan, Zhou Xinyi, Liu Jiaqi, Sun Ying, Wang Jianfeng, Li Jun, Yu Ting, Hao Weichang, Zhang Shilei, Du Yi
School of Physics, Beihang University, Haidian District, Beijing 100191, China.
School of Physical Science and Technology, Shanghai Tech University, Pudong New Area, Shanghai 201210, China.
Nano Lett. 2024 Sep 11;24(36):11246-11254. doi: 10.1021/acs.nanolett.4c02835. Epub 2024 Aug 29.
Magnetic skyrmions are swirl-like spin configurations that present topological properties, which have great potential as information carriers for future high-density and low-energy-consumption devices. The optimization of skyrmion-hosting materials that can be integrated with semiconductor-based circuits is the primary challenge for their industrialization. Two-dimensional van der Waals ferromagnets are emerging materials that have excellent carrier mobility and compatibility with integrated circuits, making them an ideal candidate for spintronic devices. Here, we report the realization of skyrmions at above room temperature in the 2D ferromagnet FeGaTe. The thickness tunability of their skyrmion size and the formation of the skyrmion lattice are revealed. Furthermore, we demonstrate that the skyrmions can be moved by a low-density current at room temperature, together with an apparent skyrmion Hall effect, which is consistent with our quantitative micromagnetic simulation. Our work offers a promising 2D material platform for harnessing magnetic skyrmions in practical device applications.
磁斯格明子是呈现拓扑性质的涡旋状自旋构型,作为未来高密度、低能耗器件的信息载体具有巨大潜力。能够与基于半导体的电路集成的斯格明子承载材料的优化是其产业化面临的主要挑战。二维范德华铁磁体是新兴材料,具有优异的载流子迁移率和与集成电路的兼容性,使其成为自旋电子器件的理想候选材料。在此,我们报告了在二维铁磁体FeGaTe中实现室温以上的斯格明子。揭示了其斯格明子尺寸的厚度可调性以及斯格明子晶格的形成。此外,我们证明了斯格明子在室温下可由低密度电流移动,同时伴有明显的斯格明子霍尔效应,这与我们的定量微磁模拟结果一致。我们的工作为在实际器件应用中利用磁斯格明子提供了一个有前景的二维材料平台。