Department of Pharmacology & Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL, 32610, United States.
Brain Res. 2024 Nov 1;1842:149105. doi: 10.1016/j.brainres.2024.149105. Epub 2024 Jul 2.
The heterotrimeric G-protein α subunit, Gα, acts to transduce extracellular signals through G-protein coupled receptors (GPCRs) and stimulates adenylyl cyclase mediated production of the second messenger cyclic adenosine monophosphate. Numerous mutations in the GNAL gene, which encodes Gα, have been identified as causative for an adult-onset dystonia. These mutations disrupt GPCR signaling cascades in in vitro assays through several mechanisms, and this disrupted signaling is hypothesized to lead to dystonic motor symptoms in patients. However, the cells and circuits that mutations in GNAL corrupt are not well understood. Published patterns of Gα expression outside the context of the striatum are sparse, conflicting, often lack cell type specificity, and may be confounded by expression of the close GNAL homolog of GNAS. Here, we use RNAScope in-situ hybridization to quantitatively characterize Gnal mRNA expression in brain tissue from wildtype C57BL/6J adult mice. We observed widespread expression of Gnal puncta throughout the brain, suggesting Gα is expressed in more brain structures and neuron types than previously accounted for. We quantify transcripts at a single cell level, and use neuron type specific markers to further classify and understand patterns of GNAL expression. Our data suggests that brain regions classically associated with motor control, initiation, and regulation show the highest expression of GNAL, with Purkinje Cells of the cerebellum showing the highest expression of any neuron type examined. Subsequent conditional Gnal knockout in Purkinje cells led to markedly decreased intracellular cAMP levels and downstream cAMP-dependent enzyme activation. Our work provides a detailed characterization of Gnal expression throughout the brain and the biochemical consequences of loss of Gα signaling in vivo in neurons that highly express Gnal.
三聚体 G 蛋白 α 亚基(Gα)通过 G 蛋白偶联受体(GPCR)转导细胞外信号,并刺激腺苷酸环化酶介导第二信使环磷酸腺苷的产生。GNAL 基因编码的 Gα 中的许多突变已被确定为成人发作性肌张力障碍的原因。这些突变通过几种机制在体外测定中破坏 GPCR 信号级联,并且这种信号中断被假设导致患者出现肌张力障碍运动症状。然而,GNAL 突变破坏的细胞和回路尚不清楚。在纹状体背景之外发表的 Gα 表达模式很少,相互矛盾,通常缺乏细胞类型特异性,并且可能受到紧密相关的 GNAL 同源物 GNAS 的表达所混淆。在这里,我们使用 RNAScope 原位杂交定量分析野生型 C57BL/6J 成年小鼠脑组织中的 Gnal mRNA 表达。我们观察到 Gnal 点在整个大脑中的广泛表达,表明 Gα 在比以前认为更多的脑结构和神经元类型中表达。我们在单细胞水平上定量转录本,并使用神经元类型特异性标志物进一步分类和理解 GNAL 表达模式。我们的数据表明,与运动控制、启动和调节相关的经典脑区显示出最高的 GNAL 表达,小脑浦肯野细胞显示出所检查的任何神经元类型中最高的表达。随后在浦肯野细胞中条件性敲除 Gnal 导致细胞内 cAMP 水平显著降低和下游 cAMP 依赖性酶激活。我们的工作提供了整个大脑中 Gnal 表达的详细特征,以及在高度表达 Gnal 的神经元中体内 Gα 信号丢失的生化后果。