从挥发性脂肪酸中进行协同产甲烷:关注种间电子传递。

Syntrophic methane production from volatile fatty acids: Focus on interspecies electron transfer.

机构信息

School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.

Shanghai Investigation, Design & Research Institute Co., Ltd., 200080, China.

出版信息

Sci Total Environ. 2024 Oct 10;946:174410. doi: 10.1016/j.scitotenv.2024.174410. Epub 2024 Jul 2.

Abstract

Methane is a renewable biomass energy source produced via anaerobic digestion (AD). Interspecies electron transfer (IET) between methanogens and syntrophic bacteria is crucial for mitigating energy barriers in this process. Understanding IET is essential for enhancing the efficiency of syntrophic methanogenesis in anaerobic digestion. Interspecies electron transfer mechanisms include interspecies H/formate transfer, direct interspecies electron transfer (DIET), and electron-shuttle-mediated transfer. This review summarizes the mechanisms, developments, and research gaps in IET pathways. Interspecies H/formate transfer requires strict control of low H partial pressure and involves complex enzymatic reactions. In contrast, DIET enhances the electron transfer efficiency and process stability. Conductive materials and key microorganisms can be modulated to stimulate the DIET. Electron shuttles (ES) allow microorganisms to interact with extracellular electron acceptors without direct contact; however, their efficiency depends on various factors. Future studies should elucidate the key functional groups, metabolic pathways, and regulatory mechanisms of IET to guide the optimization of AD processes for efficient renewable energy production.

摘要

甲烷是一种可再生的生物质能源,通过厌氧消化(AD)产生。种间电子转移(IET)在产甲烷菌和共营养菌之间对于缓解这个过程中的能量障碍至关重要。了解 IET 对于提高厌氧消化中协同产甲烷的效率是必不可少的。种间电子转移机制包括种间 H/甲酸盐转移、直接种间电子转移(DIET)和电子穿梭介导转移。这篇综述总结了 IET 途径的机制、发展和研究空白。种间 H/甲酸盐转移需要严格控制低 H 分压,并涉及复杂的酶促反应。相比之下,DIET 提高了电子转移效率和过程稳定性。可以调节导电材料和关键微生物来刺激 DIET。电子穿梭物(ES)允许微生物与细胞外电子受体相互作用而无需直接接触;然而,它们的效率取决于各种因素。未来的研究应该阐明 IET 的关键功能基团、代谢途径和调节机制,以指导 AD 过程的优化,从而实现高效的可再生能源生产。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索