School of Information Science and Technology, University of Science and Technology of China, Hefei, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, China.
Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China.
J Neurosci Methods. 2024 Sep;409:110212. doi: 10.1016/j.jneumeth.2024.110212. Epub 2024 Jul 1.
The forced swim test (FST) and tail suspension test (TST) are widely used to assess depressive-like behaviors in animals. Immobility time is used as an important parameter in both FST and TST. Traditional methods for analyzing FST and TST rely on manually setting the threshold for immobility, which is time-consuming and subjective.
We proposed a threshold-free method for automated analysis of mice in these tests using a Dual-Stream Activity Analysis Network (DSAAN). Specifically, this network extracted spatial information of mice using a limited number of video frames and combined it with temporal information extracted from differential feature maps to determine the mouse's state. To do so, we developed the Mouse FSTST dataset, which consisted of annotated video recordings of FST and TST.
By using DSAAN methods, we identify immobility states at accuracies of 92.51 % and 88.70 % for the TST and FST, respectively. The predicted immobility time from DSAAN is nicely correlated with a manual score, which indicates the reliability of the proposed method. Importantly, the DSAAN achieved over 80 % accuracy for both FST and TST by utilizing only 94 annotated images, suggesting that even a very limited training dataset can yield good performance in our model.
COMPARISON WITH EXISTING METHOD(S): Compared with DBscorer and EthoVision XT, our method exhibits the highest Pearson correlation coefficient with manual annotation results on the Mouse FSTST dataset.
We established a powerful tool for analyzing depressive-like behavior independent of threshold, which is capable of freeing users from time-consuming manual analysis.
强迫游泳试验(FST)和悬尾试验(TST)被广泛用于评估动物的抑郁样行为。不动时间是 FST 和 TST 中重要的参数。传统的 FST 和 TST 分析方法依赖于手动设置不动时间的阈值,这既耗时又主观。
我们提出了一种使用双流活动分析网络(DSAAN)自动分析这些试验中小鼠的无阈值方法。具体来说,该网络使用有限数量的视频帧提取小鼠的空间信息,并将其与从差分特征图中提取的时间信息结合起来,以确定小鼠的状态。为此,我们开发了包含 FST 和 TST 带注释视频记录的 Mouse FSTST 数据集。
使用 DSAAN 方法,我们分别在 TST 和 FST 中以 92.51%和 88.70%的准确度识别不动状态。DSAAN 预测的不动时间与手动评分很好地相关,这表明了所提出方法的可靠性。重要的是,DSAAN 仅利用 94 个注释图像就实现了 FST 和 TST 超过 80%的准确度,这表明即使是非常有限的训练数据集也可以在我们的模型中产生良好的性能。
与 DBscorer 和 EthoVision XT 相比,我们的方法在 Mouse FSTST 数据集上与手动注释结果具有最高的皮尔逊相关系数。
我们建立了一种强大的、无需阈值分析抑郁样行为的工具,可以使研究人员从耗时的手动分析中解放出来。