Suppr超能文献

运用机器学习方法为不同细胞周期蛋白依赖性激酶抑制剂亚家族推导出通用的结构-活性/选择性关系模式。

Deriving general structure-activity/selectivity relationship patterns for different subfamilies of cyclin-dependent kinase inhibitors using machine learning methods.

机构信息

Chemometrics and Cheminformatics Laboratory, Department of Analytical Chemistry, Tarbiat Modares University, Tehran, Iran.

Department of Chemistry, Payame Noor University (PNU), P.O. Box 19395-4697, Tehran, Iran.

出版信息

Sci Rep. 2024 Jul 3;14(1):15315. doi: 10.1038/s41598-024-66173-z.

Abstract

Cyclin-dependent kinases (CDKs) play essential roles in regulating the cell cycle and are among the most critical targets for cancer therapy and drug discovery. The primary objective of this research is to derive general structure-activity relationship (SAR) patterns for modeling the selectivity and activity levels of CDK inhibitors using machine learning methods. To accomplish this, 8592 small molecules with different binding affinities to CDK1, CDK2, CDK4, CDK5, and CDK9 were collected from Binding DB, and a diverse set of descriptors was calculated for each molecule. The supervised Kohonen networks (SKN) and counter propagation artificial neural networks (CPANN) models were trained to predict the activity levels and therapeutic targets of the molecules. The validity of models was confirmed through tenfold cross-validation and external test sets. Using selected sets of molecular descriptors (e.g. hydrophilicity and total polar surface area) we derived activity and selectivity maps to elucidate local regions in chemical space for active and selective CDK inhibitors. The SKN models exhibited prediction accuracies ranging from 0.75 to 0.94 for the external test sets. The developed multivariate classifiers were used for ligand-based virtual screening of 2 million random molecules of the PubChem database, yielding areas under the receiver operating characteristic curves ranging from 0.72 to 1.00 for the SKN model. Considering the persistent challenge of achieving CDK selectivity, this research significantly contributes to addressing the issue and underscores the paramount importance of developing drugs with minimized side effects.

摘要

细胞周期蛋白依赖性激酶 (CDKs) 在调节细胞周期中起着至关重要的作用,是癌症治疗和药物发现的最关键靶点之一。本研究的主要目的是利用机器学习方法为 CDK 抑制剂的选择性和活性水平建立通用的构效关系 (SAR) 模式。为此,从 BindingDB 中收集了 8592 种与 CDK1、CDK2、CDK4、CDK5 和 CDK9 具有不同结合亲和力的小分子,并为每个分子计算了多种描述符。使用监督 Kohonen 网络 (SKN) 和对传人工神经网络 (CPANN) 模型对分子的活性水平和治疗靶点进行预测。通过十折交叉验证和外部测试集验证了模型的有效性。使用选定的分子描述符集(例如亲水性和总极性表面积),我们推导出了活性和选择性图谱,以阐明化学空间中活性和选择性 CDK 抑制剂的局部区域。SKN 模型对外部测试集的预测准确率在 0.75 到 0.94 之间。开发的多元分类器用于对 PubChem 数据库中的 200 万个随机分子进行基于配体的虚拟筛选,SKN 模型的接收器操作特征曲线下面积在 0.72 到 1.00 之间。考虑到实现 CDK 选择性的持续挑战,本研究为解决这一问题做出了重大贡献,并强调了开发具有最小副作用的药物的至关重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24d2/11222421/a39119fd2482/41598_2024_66173_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验