Department of Anesthesiology and Perioperative Medicine, Division of Critical Care, Mayo Clinic, Rochester, MN, USA.
Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA.
Trials. 2024 Jul 4;25(1):450. doi: 10.1186/s13063-024-08254-y.
Patients with language barriers encounter healthcare disparities, which may be alleviated by leveraging interpreter skills to reduce cultural, language, and literacy barriers through improved bidirectional communication. Evidence supports the use of in-person interpreters, especially for interactions involving patients with complex care needs. Unfortunately, due to interpreter shortages and clinician underuse of interpreters, patients with language barriers frequently do not get the language services they need or are entitled to. Health information technologies (HIT), including artificial intelligence (AI), have the potential to streamline processes, prompt clinicians to utilize in-person interpreters, and support prioritization.
From May 1, 2023, to June 21, 2024, a single-center stepped wedge cluster randomized trial will be conducted within 35 units of Saint Marys Hospital & Methodist Hospital at Mayo Clinic in Rochester, Minnesota. The units include medical, surgical, trauma, and mixed ICUs and hospital floors that admit acute medical and surgical care patients as well as the emergency department (ED). The transitions between study phases will be initiated at 60-day intervals resulting in a 12-month study period. Units in the control group will receive standard care and rely on clinician initiative to request interpreter services. In the intervention group, the study team will generate a daily list of adult inpatients with language barriers, order the list based on their complexity scores (from highest to lowest), and share it with interpreter services, who will send a secure chat message to the bedside nurse. This engagement will be triggered by a predictive machine-learning algorithm based on a palliative care score, supplemented by other predictors of complexity including length of stay and level of care as well as procedures, events, and clinical notes.
This pragmatic clinical trial approach will integrate a predictive machine-learning algorithm into a workflow process and evaluate the effectiveness of the intervention. We will compare the use of in-person interpreters and time to first interpreter use between the control and intervention groups.
NCT05860777. May 16, 2023.
语言障碍患者在医疗保健方面存在差异,通过利用口译员的技能,改善双向沟通,减少文化、语言和读写障碍,这些差异可能会得到缓解。有证据支持使用现场口译员,特别是对于涉及有复杂护理需求的患者的交流。不幸的是,由于口译员短缺和临床医生对口译员的使用不足,语言障碍患者经常无法获得他们需要或有权获得的语言服务。健康信息技术(HIT),包括人工智能(AI),有可能简化流程,促使临床医生使用现场口译员,并支持优先排序。
从 2023 年 5 月 1 日至 2024 年 6 月 21 日,将在明尼苏达州罗切斯特市的圣玛丽医院和卫理公会医院梅奥诊所的 35 个单位内进行一项单中心、逐步楔形集群随机试验。这些单位包括医疗、外科、创伤和混合 ICU 以及收治急性内科和外科护理患者的医院病房,以及急诊科(ED)。研究阶段之间的过渡将以 60 天为间隔开始,从而形成 12 个月的研究期。对照组的单位将接受标准护理,并依靠临床医生的主动请求口译服务。在干预组中,研究团队将生成一份每日有语言障碍的成年住院患者清单,根据他们的复杂程度评分(从最高到最低)对清单进行排序,并将其分发给口译服务,后者将向床边护士发送一条安全聊天消息。这种参与将由基于姑息治疗评分的预测机器学习算法触发,辅以其他复杂程度预测因素,包括住院时间和护理水平以及程序、事件和临床笔记。
这种实用的临床试验方法将把预测机器学习算法整合到工作流程中,并评估干预措施的有效性。我们将比较对照组和干预组中现场口译员的使用情况和首次使用口译员的时间。
NCT05860777。2023 年 5 月 16 日。