多组学分析揭示了新诊断的自身免疫性 1 型糖尿病后β细胞功能丧失的驱动因素:一项 INNODIA 多中心研究。

Multi-omics analysis reveals drivers of loss of β-cell function after newly diagnosed autoimmune type 1 diabetes: An INNODIA multicenter study.

机构信息

Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.

出版信息

Diabetes Metab Res Rev. 2024 Jul;40(5):e3833. doi: 10.1002/dmrr.3833.

Abstract

AIMS

Heterogeneity in the rate of β-cell loss in newly diagnosed type 1 diabetes patients is poorly understood and creates a barrier to designing and interpreting disease-modifying clinical trials. Integrative analyses of baseline multi-omics data obtained after the diagnosis of type 1 diabetes may provide mechanistic insight into the diverse rates of disease progression after type 1 diabetes diagnosis.

METHODS

We collected samples in a pan-European consortium that enabled the concerted analysis of five different omics modalities in data from 97 newly diagnosed patients. In this study, we used Multi-Omics Factor Analysis to identify molecular signatures correlating with post-diagnosis decline in β-cell mass measured as fasting C-peptide.

RESULTS

Two molecular signatures were significantly correlated with fasting C-peptide levels. One signature showed a correlation to neutrophil degranulation, cytokine signalling, lymphoid and non-lymphoid cell interactions and G-protein coupled receptor signalling events that were inversely associated with a rapid decline in β-cell function. The second signature was related to translation and viral infection was inversely associated with change in β-cell function. In addition, the immunomics data revealed a Natural Killer cell signature associated with rapid β-cell decline.

CONCLUSIONS

Features that differ between individuals with slow and rapid decline in β-cell mass could be valuable in staging and prediction of the rate of disease progression and thus enable smarter (shorter and smaller) trial designs for disease modifying therapies as well as offering biomarkers of therapeutic effect.

摘要

目的

新诊断 1 型糖尿病患者β细胞丢失率的异质性尚不清楚,这为设计和解释疾病修正临床试验造成了障碍。对 1 型糖尿病诊断后获得的基线多组学数据进行综合分析,可能为 1 型糖尿病诊断后不同疾病进展速度提供机制上的见解。

方法

我们在一个泛欧联盟中收集了样本,使我们能够在 97 名新诊断的患者的数据中协同分析五种不同的组学模式。在这项研究中,我们使用多组学因子分析来识别与空腹 C 肽测量的β细胞质量下降相关的分子特征。

结果

有两个分子特征与空腹 C 肽水平显著相关。一个特征与中性粒细胞脱颗粒、细胞因子信号、淋巴和非淋巴细胞相互作用以及 G 蛋白偶联受体信号事件相关,这些事件与β细胞功能的快速下降呈负相关。第二个特征与翻译有关,病毒感染与β细胞功能的变化呈负相关。此外,免疫组学数据显示与β细胞快速下降相关的自然杀伤细胞特征。

结论

β细胞质量下降缓慢和快速的个体之间的差异特征在疾病分期和预测疾病进展速度方面可能具有价值,从而能够为疾病修正治疗的更智能(更短和更小)试验设计提供便利,并提供治疗效果的生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索