Suppr超能文献

基于分子动力学的锆中位错附近的氢同位素分布

Hydrogen isotope population near dislocations in zirconium from molecular dynamics.

作者信息

Foster M E, Zhou X W

机构信息

Sandia National Laboratories, Livermore, CA, 94550, USA.

出版信息

Heliyon. 2024 Jun 4;10(11):e32365. doi: 10.1016/j.heliyon.2024.e32365. eCollection 2024 Jun 15.

Abstract

Performance of zirconium tritides used for hydrogen isotope storage is significantly changed under reactor environments. This can be attributed to the formation of various radiation-induced dislocations. To help gain insight, molecular dynamics simulations have been employed to investigate hydrogen isotope population in zirconium containing different types of edge dislocations. Our studies reveal that hydrogen isotope concentration is highest near the tensile side of dislocation cores and varies based on dislocation type. This increase in hydrogen isotope concentration can be explained by the Boltzmann equation based on calculations using swelling volume and pressure field, with significantly reduced computational cost. Strikingly, because hydrogen isotope in the compressive regions of dislocations is depleted, the overall hydrogen isotope content is found to be unchanged by dislocation formation. These results counter the previous view that the dislocation trapping effect increases hydrogen isotope solubility and provide an understanding of changes in hydrogen isotope pressure under reactor conditions. By elucidating the impact of dislocations on hydrogen isotope storage performance, this research offers insights for optimizing zirconium tritides in nuclear applications. and contributes to the advancement of hydrogen isotope storage materials.

摘要

用于氢同位素储存的氢化锆在反应堆环境下的性能会发生显著变化。这可归因于各种辐射诱导位错的形成。为了深入了解,已采用分子动力学模拟来研究含不同类型刃型位错的锆中的氢同位素分布。我们的研究表明,氢同位素浓度在位错核心的拉伸侧附近最高,并因位错类型而异。基于使用肿胀体积和压力场的计算,氢同位素浓度的这种增加可以用玻尔兹曼方程来解释,且计算成本显著降低。引人注目的是,由于位错压缩区域中的氢同位素被耗尽,发现位错形成后氢同位素的总体含量不变。这些结果与之前认为位错俘获效应会增加氢同位素溶解度的观点相反,并提供了对反应堆条件下氢同位素压力变化的理解。通过阐明位错对氢同位素储存性能的影响,本研究为优化核应用中的氢化锆提供了见解,并有助于氢同位素储存材料的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d44e/11219315/be0096e77b3a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验