The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China.
Gynecology Department, The First People's Hospital of Guangzhou, Guangzhou, China.
Front Immunol. 2024 Jun 19;15:1399856. doi: 10.3389/fimmu.2024.1399856. eCollection 2024.
OBJECTIVE: Rheumatoid arthritis (RA) is a systemic disease that attacks the joints and causes a heavy economic burden on humans worldwide. T cells regulate RA progression and are considered crucial targets for therapy. Therefore, we aimed to integrate multiple datasets to explore the mechanisms of RA. Moreover, we established a T cell-related diagnostic model to provide a new method for RA immunotherapy. METHODS: scRNA-seq and bulk-seq datasets for RA were obtained from the Gene Expression Omnibus (GEO) database. Various methods were used to analyze and characterize the T cell heterogeneity of RA. Using Mendelian randomization (MR) and expression quantitative trait loci (eQTL), we screened for potential pathogenic T cell marker genes in RA. Subsequently, we selected an optimal machine learning approach by comparing the nine types of machine learning in predicting RA to identify T cell-related diagnostic features to construct a nomogram model. Patients with RA were divided into different T cell-related clusters using the consensus clustering method. Finally, we performed immune cell infiltration and clinical correlation analyses of T cell-related diagnostic features. RESULTS: By analyzing the scRNA-seq dataset, we obtained 10,211 cells that were annotated into 7 different subtypes based on specific marker genes. By integrating the eQTL from blood and RA GWAS, combined with XGB machine learning, we identified a total of 8 T cell-related diagnostic features (MIER1, PPP1CB, ICOS, GADD45A, CD3D, SLFN5, PIP4K2A, and IL6ST). Consensus clustering analysis showed that RA could be classified into two different T-cell patterns (Cluster 1 and Cluster 2), with Cluster 2 having a higher T-cell score than Cluster 1. The two clusters involved different pathways and had different immune cell infiltration states. There was no difference in age or sex between the two different T cell patterns. In addition, ICOS and IL6ST were negatively correlated with age in RA patients. CONCLUSION: Our findings elucidate the heterogeneity of T cells in RA and the communication role of these cells in an RA immune microenvironment. The construction of T cell-related diagnostic models provides a resource for guiding RA immunotherapeutic strategies.
目的:类风湿关节炎(RA)是一种全身性疾病,会攻击关节,给全球人类带来沉重的经济负担。T 细胞调节 RA 的进展,被认为是治疗的关键靶点。因此,我们旨在整合多个数据集,以探索 RA 的机制。此外,我们建立了一个与 T 细胞相关的诊断模型,为 RA 的免疫治疗提供了一种新方法。
方法:从基因表达综合数据库(GEO)中获取 RA 的 scRNA-seq 和 bulk-seq 数据集。使用多种方法分析和描述 RA 的 T 细胞异质性。利用孟德尔随机化(MR)和表达数量性状基因座(eQTL)筛选 RA 中潜在的致病性 T 细胞标记基因。随后,我们通过比较九种机器学习方法在预测 RA 中的表现,选择了最佳的机器学习方法,以确定与 T 细胞相关的诊断特征,构建列线图模型。使用共识聚类方法将 RA 患者分为不同的 T 细胞相关聚类。最后,我们对与 T 细胞相关的诊断特征进行免疫细胞浸润和临床相关性分析。
结果:通过分析 scRNA-seq 数据集,我们获得了 10211 个细胞,根据特定的标记基因将其注释为 7 种不同的亚型。通过整合血液和 RA 的 GWAS 的 eQTL,结合 XGB 机器学习,我们总共确定了 8 个与 T 细胞相关的诊断特征(MIER1、PPP1CB、ICOS、GADD45A、CD3D、SLFN5、PIP4K2A 和 IL6ST)。共识聚类分析表明,RA 可分为两种不同的 T 细胞模式(Cluster 1 和 Cluster 2),Cluster 2 的 T 细胞评分高于 Cluster 1。这两个簇涉及不同的通路,并且具有不同的免疫细胞浸润状态。两种不同的 T 细胞模式在年龄或性别上没有差异。此外,ICOS 和 IL6ST 在 RA 患者中与年龄呈负相关。
结论:我们的研究结果阐明了 RA 中 T 细胞的异质性以及这些细胞在 RA 免疫微环境中的通讯作用。构建与 T 细胞相关的诊断模型为指导 RA 免疫治疗策略提供了资源。
Mol Ther Nucleic Acids. 2025-5-30
J Orthop Translat. 2025-5-28
Clin Cosmet Investig Dermatol. 2025-4-8
Med Res Rev. 2024-7
NPJ Parkinsons Dis. 2023-10-21
J Genet Genomics. 2023-12