文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

单细胞 RNA 测序、批量 RNA 测序、孟德尔随机化和 eQTL 的综合分析揭示了类风湿关节炎中的 T 细胞相关列线图模型和亚型分类。

Integrated analysis of single-cell RNA-seq, bulk RNA-seq, Mendelian randomization, and eQTL reveals T cell-related nomogram model and subtype classification in rheumatoid arthritis.

机构信息

The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China.

Gynecology Department, The First People's Hospital of Guangzhou, Guangzhou, China.

出版信息

Front Immunol. 2024 Jun 19;15:1399856. doi: 10.3389/fimmu.2024.1399856. eCollection 2024.


DOI:10.3389/fimmu.2024.1399856
PMID:38962008
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11219584/
Abstract

OBJECTIVE: Rheumatoid arthritis (RA) is a systemic disease that attacks the joints and causes a heavy economic burden on humans worldwide. T cells regulate RA progression and are considered crucial targets for therapy. Therefore, we aimed to integrate multiple datasets to explore the mechanisms of RA. Moreover, we established a T cell-related diagnostic model to provide a new method for RA immunotherapy. METHODS: scRNA-seq and bulk-seq datasets for RA were obtained from the Gene Expression Omnibus (GEO) database. Various methods were used to analyze and characterize the T cell heterogeneity of RA. Using Mendelian randomization (MR) and expression quantitative trait loci (eQTL), we screened for potential pathogenic T cell marker genes in RA. Subsequently, we selected an optimal machine learning approach by comparing the nine types of machine learning in predicting RA to identify T cell-related diagnostic features to construct a nomogram model. Patients with RA were divided into different T cell-related clusters using the consensus clustering method. Finally, we performed immune cell infiltration and clinical correlation analyses of T cell-related diagnostic features. RESULTS: By analyzing the scRNA-seq dataset, we obtained 10,211 cells that were annotated into 7 different subtypes based on specific marker genes. By integrating the eQTL from blood and RA GWAS, combined with XGB machine learning, we identified a total of 8 T cell-related diagnostic features (MIER1, PPP1CB, ICOS, GADD45A, CD3D, SLFN5, PIP4K2A, and IL6ST). Consensus clustering analysis showed that RA could be classified into two different T-cell patterns (Cluster 1 and Cluster 2), with Cluster 2 having a higher T-cell score than Cluster 1. The two clusters involved different pathways and had different immune cell infiltration states. There was no difference in age or sex between the two different T cell patterns. In addition, ICOS and IL6ST were negatively correlated with age in RA patients. CONCLUSION: Our findings elucidate the heterogeneity of T cells in RA and the communication role of these cells in an RA immune microenvironment. The construction of T cell-related diagnostic models provides a resource for guiding RA immunotherapeutic strategies.

摘要

目的:类风湿关节炎(RA)是一种全身性疾病,会攻击关节,给全球人类带来沉重的经济负担。T 细胞调节 RA 的进展,被认为是治疗的关键靶点。因此,我们旨在整合多个数据集,以探索 RA 的机制。此外,我们建立了一个与 T 细胞相关的诊断模型,为 RA 的免疫治疗提供了一种新方法。

方法:从基因表达综合数据库(GEO)中获取 RA 的 scRNA-seq 和 bulk-seq 数据集。使用多种方法分析和描述 RA 的 T 细胞异质性。利用孟德尔随机化(MR)和表达数量性状基因座(eQTL)筛选 RA 中潜在的致病性 T 细胞标记基因。随后,我们通过比较九种机器学习方法在预测 RA 中的表现,选择了最佳的机器学习方法,以确定与 T 细胞相关的诊断特征,构建列线图模型。使用共识聚类方法将 RA 患者分为不同的 T 细胞相关聚类。最后,我们对与 T 细胞相关的诊断特征进行免疫细胞浸润和临床相关性分析。

结果:通过分析 scRNA-seq 数据集,我们获得了 10211 个细胞,根据特定的标记基因将其注释为 7 种不同的亚型。通过整合血液和 RA 的 GWAS 的 eQTL,结合 XGB 机器学习,我们总共确定了 8 个与 T 细胞相关的诊断特征(MIER1、PPP1CB、ICOS、GADD45A、CD3D、SLFN5、PIP4K2A 和 IL6ST)。共识聚类分析表明,RA 可分为两种不同的 T 细胞模式(Cluster 1 和 Cluster 2),Cluster 2 的 T 细胞评分高于 Cluster 1。这两个簇涉及不同的通路,并且具有不同的免疫细胞浸润状态。两种不同的 T 细胞模式在年龄或性别上没有差异。此外,ICOS 和 IL6ST 在 RA 患者中与年龄呈负相关。

结论:我们的研究结果阐明了 RA 中 T 细胞的异质性以及这些细胞在 RA 免疫微环境中的通讯作用。构建与 T 细胞相关的诊断模型为指导 RA 免疫治疗策略提供了资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e027/11219584/52395da2b2bd/fimmu-15-1399856-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e027/11219584/27e9f157e44a/fimmu-15-1399856-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e027/11219584/324ceed2eaa0/fimmu-15-1399856-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e027/11219584/6971945f5e8b/fimmu-15-1399856-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e027/11219584/e7d161c4770f/fimmu-15-1399856-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e027/11219584/7a32821f0fd9/fimmu-15-1399856-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e027/11219584/b1604143e2d9/fimmu-15-1399856-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e027/11219584/52395da2b2bd/fimmu-15-1399856-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e027/11219584/27e9f157e44a/fimmu-15-1399856-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e027/11219584/324ceed2eaa0/fimmu-15-1399856-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e027/11219584/6971945f5e8b/fimmu-15-1399856-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e027/11219584/e7d161c4770f/fimmu-15-1399856-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e027/11219584/7a32821f0fd9/fimmu-15-1399856-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e027/11219584/b1604143e2d9/fimmu-15-1399856-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e027/11219584/52395da2b2bd/fimmu-15-1399856-g007.jpg

相似文献

[1]
Integrated analysis of single-cell RNA-seq, bulk RNA-seq, Mendelian randomization, and eQTL reveals T cell-related nomogram model and subtype classification in rheumatoid arthritis.

Front Immunol. 2024

[2]
Integrated single-cell and bulk RNA sequencing identifies POSTN as a potential biomarker and therapeutic target for rheumatoid arthritis.

Gene. 2024-11-30

[3]
Identification of HBEGF+ fibroblasts in the remission of rheumatoid arthritis by integrating single-cell RNA sequencing datasets and bulk RNA sequencing datasets.

Arthritis Res Ther. 2022-9-6

[4]
The role of lactylation in plasma cells and its impact on rheumatoid arthritis pathogenesis: insights from single-cell RNA sequencing and machine learning.

Front Immunol. 2024

[5]
Establishment of an ovarian cancer omentum metastasis-related prognostic model by integrated analysis of scRNA-seq and bulk RNA-seq.

J Ovarian Res. 2022-11-23

[6]
Identification of Diagnostic Signatures and Immune Cell Infiltration Characteristics in Rheumatoid Arthritis by Integrating Bioinformatic Analysis and Machine-Learning Strategies.

Front Immunol. 2021

[7]
Integrated multi-omics analyses revealed the association between rheumatoid arthritis and colorectal cancer: MYO9A as a shared gene signature and an immune-related therapeutic target.

BMC Cancer. 2024-6-10

[8]
Identification of the immune-associated characteristics and predictive biomarkers of keratoconus based on single-cell RNA-sequencing and bulk RNA-sequencing.

Front Immunol. 2023

[9]
Development and validation a prognostic model based on natural killer T cells marker genes for predicting prognosis and characterizing immune status in glioblastoma through integrated analysis of single-cell and bulk RNA sequencing.

Funct Integr Genomics. 2023-8-31

[10]
Key platelet genes play important roles in predicting the prognosis of sepsis.

Sci Rep. 2024-10-9

引用本文的文献

[1]
Single-cell transcriptome analyses reveal the mechanism of mitochondrial activity in erectile dysfunction.

Sex Med. 2025-7-20

[2]
Progress and applications of single-cell RNA sequencing and spatial transcriptome technology in acute kidney injury research.

Mol Ther Nucleic Acids. 2025-5-30

[3]
From cells to clinic: Single-cell transcriptomics shaping the future of orthopedics.

J Orthop Translat. 2025-5-28

[4]
Mendelian Randomization Combined with Single-Cell Transcriptome Analysis Reveals the Role of the Key Gene PCLAF in the Pathogenesis of Atopic Dermatitis.

Clin Cosmet Investig Dermatol. 2025-4-8

[5]
Integrative analysis of single-cell and bulk RNA sequencing reveals the oncogenic role of ANXA5 in gastric cancer and its association with drug resistance.

Front Immunol. 2025-3-7

[6]
Spatial transcriptomics in autoimmune rheumatic disease: potential clinical applications and perspectives.

Inflamm Regen. 2025-2-20

本文引用的文献

[1]
GADD45A: With or without you.

Med Res Rev. 2024-7

[2]
Deconstruction of rheumatoid arthritis synovium defines inflammatory subtypes.

Nature. 2023-11

[3]
Expanding causal genes for Parkinson's disease via multi-omics analysis.

NPJ Parkinsons Dis. 2023-10-21

[4]
Construction of a prognostic model for triple-negative breast cancer based on immune-related genes, and associations between the tumor immune microenvironment and immunological therapy.

Cancer Med. 2023-7

[5]
Causal association of rheumatoid arthritis with obstructive lung disease: Evidence from Mendelian randomization study.

Heart Lung. 2023

[6]
eQTL studies: from bulk tissues to single cells.

J Genet Genomics. 2023-12

[7]
Acute liver steatosis translationally controls the epigenetic regulator MIER1 to promote liver regeneration in a study with male mice.

Nat Commun. 2023-3-18

[8]
Characteristics of the (Auto)Reactive T Cells in Rheumatoid Arthritis According to the Immune Epitope Database.

Int J Mol Sci. 2023-2-21

[9]
Multi-ancestry genome-wide association analyses identify novel genetic mechanisms in rheumatoid arthritis.

Nat Genet. 2022-11

[10]
Cedrol from ginger alleviates rheumatoid arthritis through dynamic regulation of intestinal microenvironment.

Food Funct. 2022-11-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索