Suppr超能文献

单细胞 RNA 测序、批量 RNA 测序、孟德尔随机化和 eQTL 的综合分析揭示了类风湿关节炎中的 T 细胞相关列线图模型和亚型分类。

Integrated analysis of single-cell RNA-seq, bulk RNA-seq, Mendelian randomization, and eQTL reveals T cell-related nomogram model and subtype classification in rheumatoid arthritis.

机构信息

The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China.

Gynecology Department, The First People's Hospital of Guangzhou, Guangzhou, China.

出版信息

Front Immunol. 2024 Jun 19;15:1399856. doi: 10.3389/fimmu.2024.1399856. eCollection 2024.

Abstract

OBJECTIVE

Rheumatoid arthritis (RA) is a systemic disease that attacks the joints and causes a heavy economic burden on humans worldwide. T cells regulate RA progression and are considered crucial targets for therapy. Therefore, we aimed to integrate multiple datasets to explore the mechanisms of RA. Moreover, we established a T cell-related diagnostic model to provide a new method for RA immunotherapy.

METHODS

scRNA-seq and bulk-seq datasets for RA were obtained from the Gene Expression Omnibus (GEO) database. Various methods were used to analyze and characterize the T cell heterogeneity of RA. Using Mendelian randomization (MR) and expression quantitative trait loci (eQTL), we screened for potential pathogenic T cell marker genes in RA. Subsequently, we selected an optimal machine learning approach by comparing the nine types of machine learning in predicting RA to identify T cell-related diagnostic features to construct a nomogram model. Patients with RA were divided into different T cell-related clusters using the consensus clustering method. Finally, we performed immune cell infiltration and clinical correlation analyses of T cell-related diagnostic features.

RESULTS

By analyzing the scRNA-seq dataset, we obtained 10,211 cells that were annotated into 7 different subtypes based on specific marker genes. By integrating the eQTL from blood and RA GWAS, combined with XGB machine learning, we identified a total of 8 T cell-related diagnostic features (MIER1, PPP1CB, ICOS, GADD45A, CD3D, SLFN5, PIP4K2A, and IL6ST). Consensus clustering analysis showed that RA could be classified into two different T-cell patterns (Cluster 1 and Cluster 2), with Cluster 2 having a higher T-cell score than Cluster 1. The two clusters involved different pathways and had different immune cell infiltration states. There was no difference in age or sex between the two different T cell patterns. In addition, ICOS and IL6ST were negatively correlated with age in RA patients.

CONCLUSION

Our findings elucidate the heterogeneity of T cells in RA and the communication role of these cells in an RA immune microenvironment. The construction of T cell-related diagnostic models provides a resource for guiding RA immunotherapeutic strategies.

摘要

目的

类风湿关节炎(RA)是一种全身性疾病,会攻击关节,给全球人类带来沉重的经济负担。T 细胞调节 RA 的进展,被认为是治疗的关键靶点。因此,我们旨在整合多个数据集,以探索 RA 的机制。此外,我们建立了一个与 T 细胞相关的诊断模型,为 RA 的免疫治疗提供了一种新方法。

方法

从基因表达综合数据库(GEO)中获取 RA 的 scRNA-seq 和 bulk-seq 数据集。使用多种方法分析和描述 RA 的 T 细胞异质性。利用孟德尔随机化(MR)和表达数量性状基因座(eQTL)筛选 RA 中潜在的致病性 T 细胞标记基因。随后,我们通过比较九种机器学习方法在预测 RA 中的表现,选择了最佳的机器学习方法,以确定与 T 细胞相关的诊断特征,构建列线图模型。使用共识聚类方法将 RA 患者分为不同的 T 细胞相关聚类。最后,我们对与 T 细胞相关的诊断特征进行免疫细胞浸润和临床相关性分析。

结果

通过分析 scRNA-seq 数据集,我们获得了 10211 个细胞,根据特定的标记基因将其注释为 7 种不同的亚型。通过整合血液和 RA 的 GWAS 的 eQTL,结合 XGB 机器学习,我们总共确定了 8 个与 T 细胞相关的诊断特征(MIER1、PPP1CB、ICOS、GADD45A、CD3D、SLFN5、PIP4K2A 和 IL6ST)。共识聚类分析表明,RA 可分为两种不同的 T 细胞模式(Cluster 1 和 Cluster 2),Cluster 2 的 T 细胞评分高于 Cluster 1。这两个簇涉及不同的通路,并且具有不同的免疫细胞浸润状态。两种不同的 T 细胞模式在年龄或性别上没有差异。此外,ICOS 和 IL6ST 在 RA 患者中与年龄呈负相关。

结论

我们的研究结果阐明了 RA 中 T 细胞的异质性以及这些细胞在 RA 免疫微环境中的通讯作用。构建与 T 细胞相关的诊断模型为指导 RA 免疫治疗策略提供了资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e027/11219584/27e9f157e44a/fimmu-15-1399856-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验