Suppr超能文献

BASSA:新软件工具揭示低频动物声音可视化中的隐藏细节。

BASSA: New software tool reveals hidden details in visualisation of low-frequency animal sounds.

作者信息

Jancovich Benjamin A, Rogers Tracey L

机构信息

Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences University of New South Wales Kensington New South Wales Australia.

出版信息

Ecol Evol. 2024 Jul 3;14(7):e11636. doi: 10.1002/ece3.11636. eCollection 2024 Jul.

Abstract

The study of animal sounds in biology and ecology relies heavily upon time-frequency (TF) visualisation, most commonly using the short-time Fourier transform (STFT) spectrogram. This method, however, has inherent bias towards either temporal or spectral details that can lead to misinterpretation of complex animal sounds. An ideal TF visualisation should accurately convey the structure of the sound in terms of both frequency and time, however, the STFT often cannot meet this requirement. We evaluate the accuracy of four TF visualisation methods (superlet transform [SLT], continuous wavelet transform [CWT] and two STFTs) using a synthetic test signal. We then apply these methods to visualise sounds of the Chagos blue whale, Asian elephant, southern cassowary, eastern whipbird, mulloway fish and the American crocodile. We show that the SLT visualises the test signal with 18.48%-28.08% less error than the other methods. A comparison between our visualisations of animal sounds and their literature descriptions indicates that the STFT's bias may have caused misinterpretations in describing pygmy blue whale songs and elephant rumbles. We suggest that use of the SLT to visualise low-frequency animal sounds may prevent such misinterpretations. Finally, we employ the SLT to develop 'BASSA', an open-source, GUI software application that offers a no-code, user-friendly tool for analysing short-duration recordings of low-frequency animal sounds for the Windows platform. The SLT visualises low-frequency animal sounds with improved accuracy, in a user-friendly format, minimising the risk of misinterpretation while requiring less technical expertise than the STFT. Using this method could propel advances in acoustics-driven studies of animal communication, vocal production methods, phonation and species identification.

摘要

生物学和生态学中对动物声音的研究在很大程度上依赖于时频(TF)可视化,最常用的是短时傅里叶变换(STFT)频谱图。然而,这种方法对时间或频谱细节存在固有偏差,可能导致对复杂动物声音的误解。理想的TF可视化应该在频率和时间方面准确传达声音的结构,然而,STFT往往无法满足这一要求。我们使用合成测试信号评估了四种TF可视化方法(超小波变换[SLT]、连续小波变换[CWT]和两种STFT)的准确性。然后,我们应用这些方法来可视化查戈斯蓝鲸、亚洲象、南方食火鸡、东部鞭鸫、 mulloway鱼和美国鳄鱼的声音。我们表明,与其他方法相比,SLT可视化测试信号的误差降低了18.48%-28.08%。我们对动物声音的可视化与文献描述之间的比较表明,STFT的偏差可能在描述侏儒蓝鲸歌声和大象隆隆声时导致了误解。我们建议使用SLT来可视化低频动物声音可能会防止此类误解。最后,我们使用SLT开发了“BASSA”,这是一款开源的图形用户界面(GUI)软件应用程序,为Windows平台提供了一个无需编码、用户友好的工具,用于分析低频动物声音的短时长录音。SLT以提高的准确性、用户友好的格式可视化低频动物声音,将误解风险降至最低,同时比STFT需要更少的技术专业知识。使用这种方法可以推动声学驱动的动物交流、发声方法、发声和物种识别研究的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dea/11220835/c4acbf8b6a5d/ECE3-14-e11636-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验