Liu Zuolin, He Zihan, Hu Xiao, Sun Zitao, Ge Qi, Xu Jian, Fang Hongbin
Institute of AI and Robotics, State Key Laboratory of Medical Neurobiology, MOE Engineering Research Center of AI & Robotics, Fudan University, Shanghai, China.
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China.
Soft Robot. 2025 Feb;12(1):34-44. doi: 10.1089/soro.2023.0246. Epub 2024 Jul 4.
In recent years, the exploration of worm-like robots has garnered much attention for their adaptability in confined environments. However, current designs face challenges in fully utilizing the mechanical properties of structures/materials to replicate the superior performance of real worms. In this article, we propose an approach to address this limitation based on the stacked Miura origami structure, achieving the seamless integration of structural design, mechanical properties, and robotic functionalities, that is, the mechanical properties originate from the geometric design of the origami structure and at the same time serve the locomotion capability of the robot. Three major advantages of our design are: the implementation of origami technology facilitates a more accessible and convenient fabrication process for segmented robotic skin with periodicity and flexibility, as well as robotic bristles with anchoring effect; the utilization of the Poisson's ratio effect for deformation amplification; and the incorporation of localized folding motion for continuous peristaltic locomotion. Utilizing the high geometric designability inherent in origami, our robot demonstrates customizable morphing and quantifiable mechanical properties. Based on the origami worm-like robot prototype, we experimentally verified the effectiveness of the proposed design in realizing the deformation amplification effect and localized folding motion. By comparing this to a conventional worm-like robot with discontinuous deformation, we highlight the merits of these mechanical properties in enhancing the robot's mobility. To sum up, this article showcases a bottom-up approach to robot development, including geometric design, mechanical characterization, and functionality realization, presenting a unique perspective for advancing the development of bioinspired soft robots.
近年来,蠕虫状机器人因其在受限环境中的适应性而备受关注。然而,目前的设计在充分利用结构/材料的机械性能以复制真实蠕虫的卓越性能方面面临挑战。在本文中,我们提出了一种基于堆叠三浦折纸结构来解决这一限制的方法,实现了结构设计、机械性能和机器人功能的无缝集成,即机械性能源自折纸结构的几何设计,同时服务于机器人的运动能力。我们设计的三个主要优点是:折纸技术的应用便于制造具有周期性和灵活性的分段机器人皮肤以及具有锚固作用的机器人刚毛,使其制造过程更加便捷;利用泊松比效应进行变形放大;以及纳入局部折叠运动以实现连续蠕动。利用折纸固有的高度几何设计性,我们的机器人展示了可定制的变形和可量化的机械性能。基于折纸蠕虫状机器人原型,我们通过实验验证了所提出设计在实现变形放大效应和局部折叠运动方面的有效性。通过将其与具有不连续变形的传统蠕虫状机器人进行比较,我们突出了这些机械性能在增强机器人机动性方面的优点。总之,本文展示了一种自下而上的机器人开发方法,包括几何设计、机械表征和功能实现,为推动仿生软机器人的发展提供了独特的视角。
Soft Robot. 2025-2
Front Robot AI. 2021-8-20
Bioinspir Biomim. 2023-5-24
Bioinspir Biomim. 2022-12-9
Biomimetics (Basel). 2024-8-9
Biomimetics (Basel). 2024-9-6
Bioinspir Biomim. 2017-10-16