c-Myc 下游的多胺和 EIF5A 高丝氨酸化赋予 BRAF 突变黑色素瘤的靶向治疗耐药性。

Polyamine and EIF5A hypusination downstream of c-Myc confers targeted therapy resistance in BRAF mutant melanoma.

机构信息

Medicinal Materials Research Center, Korea Institute of Science and Technology, 5 Hwarangro-14-Gil, SeongbukGu, Seoul, 02792, Republic of Korea.

Department of Life Sciences, Korea University, 145 AnamRo, SeongbukGu, Seoul, 02841, Republic of Korea.

出版信息

Mol Cancer. 2024 Jul 4;23(1):136. doi: 10.1186/s12943-024-02031-w.

Abstract

BACKGROUND

BRAF inhibitors are widely employed in the treatment of melanoma with the BRAF V600E mutation. However, the development of resistance compromises their therapeutic efficacy. Diverse genomic and transcriptomic alterations are found in BRAF inhibitor resistant melanoma, posing a pressing need for convergent, druggable target that reverse therapy resistant tumor with different resistance mechanisms.

METHODS

CRISPR-Cas9 screens were performed to identify novel target gene whose inhibition selectively targets A375VR, a BRAF V600E mutant cell line with acquired resistance to vemurafenib. Various in vitro and in vivo assays, including cell competition assay, water soluble tetrazolium (WST) assay, live-dead assay and xenograft assay were performed to confirm synergistic cell death. Liquid Chromatography-Mass Spectrometry analyses quantified polyamine biosynthesis and changes in proteome in vemurafenib resistant melanoma. EIF5A hypusination dependent protein translation and subsequent changes in mitochondrial biogenesis and activity were assayed by O-propargyl-puromycin labeling assay, mitotracker, mitoSOX labeling and seahorse assay. Bioinformatics analyses were used to identify the association of polyamine biosynthesis with BRAF inhibitor resistance and poor prognosis in melanoma patient cohorts.

RESULTS

We elucidate the role of polyamine biosynthesis and its regulatory mechanisms in promoting BRAF inhibitor resistance. Leveraging CRISPR-Cas9 screens, we identify AMD1 (S-adenosylmethionine decarboxylase 1), a critical enzyme for polyamine biosynthesis, as a druggable target whose inhibition reduces vemurafenib resistance. Metabolomic and proteomic analyses reveal that polyamine biosynthesis is upregulated in vemurafenib-resistant cancer, resulting in enhanced EIF5A hypusination, translation of mitochondrial proteins and oxidative phosphorylation. We also identify that sustained c-Myc levels in vemurafenib-resistant cancer are responsible for elevated polyamine biosynthesis. Inhibition of polyamine biosynthesis or c-Myc reversed vemurafenib resistance both in vitro cell line models and in vivo in a xenograft model. Polyamine biosynthesis signature is associated with poor prognosis and shorter progression free survival after BRAF/MAPK inhibitor treatment in melanoma cohorts, highlighting the clinical relevance of our findings.

CONCLUSIONS

Our findings delineate the molecular mechanisms involving polyamine-EIF5A hypusination-mitochondrial respiration pathway conferring BRAF inhibitor resistance in melanoma. These targets will serve as effective therapeutic targets that can maximize the therapeutic efficacy of existing BRAF inhibitors.

摘要

背景

BRAF 抑制剂广泛用于治疗 BRAF V600E 突变的黑色素瘤。然而,耐药性的发展会影响其治疗效果。在 BRAF 抑制剂耐药性黑色素瘤中发现了多种基因组和转录组改变,因此迫切需要找到一种能够针对不同耐药机制的、具有收敛性和可用药的靶向治疗药物。

方法

使用 CRISPR-Cas9 筛选技术鉴定了一种新的靶基因,该基因的抑制作用可选择性地靶向 A375VR,这是一种对vemurafenib 获得性耐药的 BRAF V600E 突变细胞系。通过细胞竞争实验、水溶性四唑盐(WST)检测、死活检测和异种移植实验等多种体外和体内实验,证实了协同细胞死亡的发生。液质联用分析定量检测了多胺生物合成和vemurafenib 耐药黑色素瘤中蛋白质组的变化。通过 O-炔丙基嘌呤标记实验、线粒体追踪剂、mitoSOX 标记和 Seahorse 分析,检测了 EIF5A 脱氨依赖的蛋白翻译以及随后的线粒体生物发生和活性变化。生物信息学分析用于鉴定多胺生物合成与黑色素瘤患者队列中 BRAF 抑制剂耐药性和预后不良的关联。

结果

我们阐明了多胺生物合成及其调节机制在促进 BRAF 抑制剂耐药性方面的作用。通过 CRISPR-Cas9 筛选,我们确定了多胺生物合成的关键酶 AMD1(S-腺苷甲硫氨酸脱羧酶 1)作为一个可用药的靶点,其抑制作用可降低 vemurafenib 的耐药性。代谢组学和蛋白质组学分析表明,vemurafenib 耐药性肿瘤中的多胺生物合成上调,导致 EIF5A 脱氨化、线粒体蛋白翻译和氧化磷酸化增强。我们还发现,vemurafenib 耐药性肿瘤中持续的 c-Myc 水平负责多胺生物合成的升高。在体外细胞系模型和异种移植模型中,多胺生物合成的抑制或 c-Myc 的抑制均可逆转 vemurafenib 的耐药性。在黑色素瘤队列中,多胺生物合成特征与 BRAF/MAPK 抑制剂治疗后的不良预后和无进展生存期较短相关,这突显了我们研究结果的临床相关性。

结论

我们的研究结果阐述了涉及多胺-EIF5A 脱氨化-线粒体呼吸途径的分子机制,该途径赋予了黑色素瘤对 BRAF 抑制剂的耐药性。这些靶点将成为有效的治疗靶点,可最大限度地提高现有 BRAF 抑制剂的治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd0d/11223307/1ffeaccb54cf/12943_2024_2031_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索