Department of Nuclear Medicine, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, China.
Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave, Wuhan, 430022, China.
J Nanobiotechnology. 2024 Jul 4;22(1):394. doi: 10.1186/s12951-024-02661-8.
DNA nanostructures have long been developed for biomedical purposes, but their controlled delivery in vivo proposes a major challenge for disease theranostics. We previously reported that DNA nanostructures on the scales of tens and hundreds nanometers showed preferential renal excretion or kidney retention, allowing for sensitive evaluation and effective protection of kidney function, in response to events such as unilateral ureter obstruction or acute kidney injury. Encouraged by the positive results, we redirected our focus to the liver, specifically targeting organs noticeably lacking DNA materials, to explore the interaction between DNA nanostructures and the liver. Through PET imaging, we identified SDF and M13 as DNA nanostructures exhibiting significant accumulation in the liver among numerous candidates. Initially, we investigated and assessed their biodistribution, toxicity, and immunogenicity in healthy mice, establishing the structure-function relationship of DNA nanostructures in the normal murine. Subsequently, we employed a mouse model of liver ischemia-reperfusion injury (IRI) to validate the nano-bio interactions of SDF and M13 under more challenging pathological conditions. M13 not only exacerbated hepatic oxidative injury but also elevated local apoptosis levels. In contrast, SDF demonstrated remarkable ability to scavenge oxidative responses in the liver, thereby mitigating hepatocyte injury. These compelling results underscore the potential of SDF as a promising therapeutic agent for liver-related conditions. This aimed to elucidate their roles and mechanisms in liver injury, providing a new perspective for the biomedical applications of DNA nanostructures.
DNA 纳米结构长期以来一直被开发用于生物医学目的,但它们在体内的受控传递对疾病的治疗诊断提出了重大挑战。我们之前报道称,数十到数百纳米规模的 DNA 纳米结构表现出优先的肾脏排泄或肾脏保留,能够敏感地评估和有效地保护肾功能,以应对单侧输尿管梗阻或急性肾损伤等事件。受到积极结果的鼓舞,我们将注意力转向肝脏,特别是针对明显缺乏 DNA 材料的器官,以探索 DNA 纳米结构与肝脏之间的相互作用。通过 PET 成像,我们在众多候选物中鉴定出 SDF 和 M13 作为在肝脏中具有显著积累的 DNA 纳米结构。最初,我们在健康小鼠中研究和评估了它们的生物分布、毒性和免疫原性,建立了 DNA 纳米结构在正常小鼠中的结构-功能关系。随后,我们使用肝脏缺血再灌注损伤 (IRI) 的小鼠模型来验证 SDF 和 M13 在更具挑战性的病理条件下的纳米-生物相互作用。M13 不仅加剧了肝氧化损伤,还升高了局部细胞凋亡水平。相比之下,SDF 表现出显著的清除肝脏氧化反应的能力,从而减轻肝细胞损伤。这些令人信服的结果突显了 SDF 作为一种有前途的肝脏相关疾病治疗剂的潜力。这旨在阐明它们在肝损伤中的作用和机制,为 DNA 纳米结构在生物医学中的应用提供了新的视角。
J Nanobiotechnology. 2024-7-4
Biomed Pharmacother. 2021-11
Am J Physiol Gastrointest Liver Physiol. 2015-4-15
J Hematol Oncol. 2023-7-25
J Am Chem Soc. 2023-2-12
Theranostics. 2022
Nat Nanotechnol. 2021-12
Angew Chem Int Ed Engl. 2022-2-14
Nat Chem. 2020-11