Suppr超能文献

负载于心肌细胞线粒体靶向纳米酶系统的铁螯合剂用于治疗小鼠模型中的心肌缺血再灌注损伤。

Iron chelators loaded on myocardiocyte mitochondria-targeted nanozyme system for treating myocardial ischemia-reperfusion injury in mouse models.

作者信息

Zhu Ke, Wang Kun, Zhang Rongting, Zhu Ziyang, Wang Wenyuan, Yang Biao, Zhao Jun, Shen Yunli

机构信息

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.

Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.

出版信息

J Nanobiotechnology. 2025 Feb 15;23(1):112. doi: 10.1186/s12951-025-03197-1.

Abstract

Ferroptosis plays a critical role in myocardial ischemia-reperfusion injury (MIRI), posing a significant clinical challenge. Nanoenzymes like cerium oxide (CeO) hold promise for mitigating oxidative damage and inhibiting ferroptosis, but their delivery efficiency and biological activity require optimization. This study aims to develop a targeted nanozyme delivery system for MIRI treatment by integrating CeO with mesoporous polydopamine (mPDA) and dexrazoxane (DXZ) to achieve synergistic therapeutic effects. A biomineralization technique was used to synthesize CeO nanoparticles (2-3 nm) within mPDA, forming ~ 130 nm composite nanoparticles (Ce@mPDA). Surface modifications with cardiac homing peptide (CHP) and triphenylphosphine (TPP) enabled hierarchical targeting to injured myocardium and mitochondria. DXZ-loaded Ce@mPDA-C/P nanoparticles (D/Ce@mPDA-C/P) were evaluated in vitro and in a MIRI mouse model for their effects on oxidative stress, ferroptosis, apoptosis, inflammation, and cardiac function. D/Ce@mPDA-C/P nanoparticles exhibited robust ROS scavenging, sustained DXZ release, and efficient myocardial and mitochondrial targeting. The D/Ce@mPDA-C/P system significantly reduced oxidative stress, upregulated GPX4 expression, inhibited ferroptosis, and modulated the inflammatory microenvironment. Long-term studies in a MIRI mouse model demonstrated reductions in myocardial fibrosis and improvements in cardiac function, including enhanced fractional shortening and ejection fraction. This hierarchical targeting delivery system effectively combines the antioxidant properties of CeO with the iron-chelating effects of DXZ, providing a promising therapeutic strategy for MIRI. This approach may expand the clinical use of DXZ and advance nanomedicine-based interventions for myocardial repair.

摘要

铁死亡在心肌缺血再灌注损伤(MIRI)中起关键作用,这构成了重大的临床挑战。像氧化铈(CeO)这样的纳米酶有望减轻氧化损伤并抑制铁死亡,但其递送效率和生物活性需要优化。本研究旨在通过将CeO与介孔聚多巴胺(mPDA)和右丙亚胺(DXZ)整合,开发一种用于MIRI治疗的靶向纳米酶递送系统,以实现协同治疗效果。采用生物矿化技术在mPDA内合成CeO纳米颗粒(2 - 3纳米),形成约130纳米的复合纳米颗粒(Ce@mPDA)。用心脏归巢肽(CHP)和三苯基膦(TPP)进行表面修饰,能够实现对受损心肌和线粒体的分级靶向。在体外和MIRI小鼠模型中评估了负载DXZ的Ce@mPDA - C/P纳米颗粒(D/Ce@mPDA - C/P)对氧化应激、铁死亡、细胞凋亡、炎症和心脏功能的影响。D/Ce@mPDA - C/P纳米颗粒表现出强大的活性氧清除能力、持续的DXZ释放以及高效的心肌和线粒体靶向性。D/Ce@mPDA - C/P系统显著降低了氧化应激,上调了GPX4表达,抑制了铁死亡,并调节了炎症微环境。在MIRI小鼠模型中的长期研究表明,心肌纤维化减少,心脏功能改善,包括缩短分数和射血分数增加。这种分级靶向递送系统有效地将CeO的抗氧化特性与DXZ的铁螯合作用结合起来,为MIRI提供了一种有前景的治疗策略。这种方法可能会扩大DXZ的临床应用,并推进基于纳米医学的心肌修复干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619e/11829476/b4f15f4563e4/12951_2025_3197_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验