深度学习在癌症中的应用:2015 年至 2023 年的文献计量分析
Bibliometric analysis of the application of deep learning in cancer from 2015 to 2023.
机构信息
Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Street Taiping No.25, Region Jiangyang, Luzhou, Sichuan Province, 646099, China.
Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.
出版信息
Cancer Imaging. 2024 Jul 4;24(1):85. doi: 10.1186/s40644-024-00737-0.
BACKGROUND
Recently, the application of deep learning (DL) has made great progress in various fields, especially in cancer research. However, to date, the bibliometric analysis of the application of DL in cancer is scarce. Therefore, this study aimed to explore the research status and hotspots of the application of DL in cancer.
METHODS
We retrieved all articles on the application of DL in cancer from the Web of Science database Core Collection database. Biblioshiny, VOSviewer and CiteSpace were used to perform the bibliometric analysis through analyzing the numbers, citations, countries, institutions, authors, journals, references, and keywords.
RESULTS
We found 6,016 original articles on the application of DL in cancer. The number of annual publications and total citations were uptrend in general. China published the greatest number of articles, USA had the highest total citations, and Saudi Arabia had the highest centrality. Chinese Academy of Sciences was the most productive institution. Tian, Jie published the greatest number of articles, while He Kaiming was the most co-cited author. IEEE Access was the most popular journal. The analysis of references and keywords showed that DL was mainly used for the prediction, detection, classification and diagnosis of breast cancer, lung cancer, and skin cancer.
CONCLUSIONS
Overall, the number of articles on the application of DL in cancer is gradually increasing. In the future, further expanding and improving the application scope and accuracy of DL applications, and integrating DL with protein prediction, genomics and cancer research may be the research trends.
背景
最近,深度学习(DL)在各个领域取得了很大进展,尤其是在癌症研究领域。然而,到目前为止,关于 DL 在癌症中的应用的文献计量分析还很少。因此,本研究旨在探讨 DL 在癌症中的应用的研究现状和热点。
方法
我们从 Web of Science 核心合集数据库中检索了所有关于 DL 在癌症中的应用的文章。通过分析发文数量、引文数量、国家、机构、作者、期刊、参考文献和关键词,使用 Biblioshiny、VOSviewer 和 CiteSpace 进行文献计量分析。
结果
我们发现了 6016 篇关于 DL 在癌症中的应用的原始文章。总的来说,年度发文数量和总引文数量呈上升趋势。中国发表的文章数量最多,美国的总引文数量最高,沙特阿拉伯的中心度最高。中国科学院是最具生产力的机构。田杰发表的文章数量最多,而何恺明是被引最多的作者。IEEE Access 是最受欢迎的期刊。参考文献和关键词的分析表明,DL 主要用于乳腺癌、肺癌和皮肤癌的预测、检测、分类和诊断。
结论
总体而言,关于 DL 在癌症中的应用的文章数量正在逐渐增加。未来,进一步扩大和提高 DL 应用的应用范围和准确性,并将 DL 与蛋白质预测、基因组学和癌症研究相结合,可能是研究趋势。
相似文献
Cancer Imaging. 2024-7-4
Front Biosci (Landmark Ed). 2022-8-31
J Orthop Surg Res. 2020-10-8
Front Artif Intell. 2023-11-9
Medicine (Baltimore). 2024-4-12
Complement Ther Med. 2023-12
引用本文的文献
Front Microbiol. 2025-1-9
本文引用的文献
Comput Struct Biotechnol J. 2023-1-31
Curr Genomics. 2022-8-11
Cancers (Basel). 2022-11-13
Front Oncol. 2022-7-13
Semin Nucl Med. 2022-9
Healthcare (Basel). 2021-12-22