Suppr超能文献

人工智能在胃癌中的应用:文献计量学与可视化分析——CiteSpace

Artificial intelligence applicated in gastric cancer: A bibliometric and visual analysis CiteSpace.

作者信息

Zhang Guoyang, Song Jingjing, Feng Zongfeng, Zhao Wentao, Huang Pan, Liu Li, Zhang Yang, Su Xufeng, Wu Yukang, Cao Yi, Li Zhengrong, Jie Zhigang

机构信息

Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China.

Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China.

出版信息

Front Oncol. 2023 Jan 4;12:1075974. doi: 10.3389/fonc.2022.1075974. eCollection 2022.

Abstract

OBJECTIVE

This study aimed to analyze and visualize the current research focus, research frontiers, evolutionary processes, and trends of artificial intelligence (AI) in the field of gastric cancer using a bibliometric analysis.

METHODS

The Web of Science Core Collection database was selected as the data source for this study to retrieve and obtain articles and reviews related to AI in gastric cancer. All the information extracted from the articles was imported to CiteSpace to conduct the bibliometric and knowledge map analysis, allowing us to clearly visualize the research hotspots and trends in this field.

RESULTS

A total of 183 articles published between 2017 and 2022 were included, contributed by 201 authors from 33 countries/regions. Among them, China (47.54%), Japan (21.86%), and the USA (13.11%) have made outstanding contributions in this field, accounting fsor 82.51% of the total publications. The primary research institutions were Wuhan University, Tokyo University, and Tada Tomohiro Inst Gastroenterol and Proctol. Tada (n = 12) and Hirasawa (n = 90) were ranked first in the top 10 authors and co-cited authors, respectively. Gastrointestinal Endoscopy (21 publications; IF 2022, 9.189; Q1) was the most published journal, while Gastric Cancer (133 citations; IF 2022, 8.171; Q1) was the most co-cited journal. Nevertheless, the cooperation between different countries and institutions should be further strengthened. The most common keywords were AI, gastric cancer, and convolutional neural network. The "deep-learning algorithm" started to burst in 2020 and continues till now, which indicated that this research topic has attracted continuous attention in recent years and would be the trend of research on AI application in GC.

CONCLUSIONS

Research related to AI in gastric cancer is increasing exponentially. Current research hotspots focus on the application of AI in gastric cancer, represented by convolutional neural networks and deep learning, in diagnosis and differential diagnosis and staging. Considering the great potential and clinical application prospects, the related area of AI applications in gastric cancer will remain a research hotspot in the future.

摘要

目的

本研究旨在通过文献计量分析,剖析并可视化人工智能(AI)在胃癌领域的当前研究重点、前沿、演进过程及趋势。

方法

本研究选取Web of Science核心合集数据库作为数据源,检索并获取与胃癌中AI相关的文章和综述。从文章中提取的所有信息被导入CiteSpace进行文献计量和知识图谱分析,以便清晰地可视化该领域的研究热点和趋势。

结果

共纳入2017年至2022年间发表的183篇文章,由来自33个国家/地区的201位作者撰写。其中,中国(47.54%)、日本(21.86%)和美国(13.11%)在该领域做出了突出贡献,占总出版物的82.51%。主要研究机构有武汉大学、东京大学以及多田智博胃肠病与直肠病研究所。多田(n = 12)和平泽(n = 90)分别在前十作者和共被引作者中排名第一。《胃肠内镜》(21篇出版物;2022年影响因子9.189;Q1区)是发表文章最多的期刊,而《胃癌》(133次被引;2022年影响因子8.171;Q1区)是被引次数最多的期刊。然而,不同国家和机构之间的合作仍需进一步加强。最常见的关键词是人工智能、胃癌和卷积神经网络。“深度学习算法”在2020年开始爆发并持续至今,这表明该研究主题近年来一直受到持续关注,并且将是人工智能在胃癌中应用研究的趋势。

结论

胃癌中与人工智能相关的研究呈指数级增长。当前的研究热点集中在人工智能在胃癌中的应用,以卷积神经网络和深度学习为代表,应用于诊断、鉴别诊断和分期。鉴于其巨大潜力和临床应用前景,人工智能在胃癌中的应用相关领域未来仍将是研究热点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a76/9846739/b7ea88042afa/fonc-12-1075974-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验